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In July of 1994, Comet Shoemaker-Levy struck the planet Jupiter, de-
positing 7 × 1022 joules of energy, and incidentally giving rise to a series
of Hollywood movies in which our own planet is threatened by an impact
by a comet or asteroid. There is evidence that such an impact caused
the extinction of the dinosaurs. Left: Jupiter’s gravitational force on the
near side of the comet was greater than on the far side, and this differ-
ence in force tore up the comet into a string of fragments. Two separate
telescope images have been combined to create the illusion of a point of
view just behind the comet. (The colored fringes at the edges of Jupiter
are artifacts of the imaging system.) Top: A series of images of the plume
of superheated gas kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An image after all the
impacts were over, showing the damage done.

Chapter 1

Conservation of Energy

1.1 The Search for a Perpetual Motion Machine
Don’t underestimate greed and laziness as forces for progress. Mod-
ern chemistry was born from the collision of lust for gold with dis-
taste for the hard work of finding it and digging it up. Failed efforts
by generations of alchemists to turn lead into gold led finally to the
conclusion that it could not be done: certain substances, the chem-
ical elements, are fundamental, and chemical reactions can neither
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a / The magnet draws the
ball to the top of the ramp, where
it falls through the hole and rolls
back to the bottom.

b / As the wheel spins clock-
wise, the flexible arms sweep
around and bend and unbend. By
dropping off its ball on the ramp,
the arm is supposed to make
itself lighter and easier to lift over
the top. Picking its own ball back
up again on the right, it helps to
pull the right side down.

increase nor decrease the amount of an element such as gold.

Now flash forward to the early industrial age. Greed and laziness
have created the factory, the train, and the ocean liner, but in each
of these is a boiler room where someone gets sweaty shoveling the
coal to fuel the steam engine. Generations of inventors have tried to
create a machine, called a perpetual motion machine, that would run
forever without fuel. Such a machine is not forbidden by Newton’s
laws of motion, which are built around the concepts of force and
inertia. Force is free, and can be multiplied indefinitely with pulleys,
gears, or levers. The principle of inertia seems even to encourage
the belief that a cleverly constructed machine might not ever run
down.

Figures a and b show two of the innumerable perpetual motion
machines that have been proposed. The reason these two examples
don’t work is not much different from the reason all the others have
failed. Consider machine a. Even if we assume that a properly
shaped ramp would keep the ball rolling smoothly through each
cycle, friction would always be at work. The designer imagined that
the machine would repeat the same motion over and over again, so
that every time it reached a given point its speed would be exactly
the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until finally the ball
would no longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The
rotating earth might seem like a perfect perpetual motion machine,
since it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it first formed, and the earth continues to slow
its rotation, making today just a little longer than yesterday. The
very subtle source of friction is the tides. The moon’s gravity raises
bulges in the earth’s oceans, and as the earth rotates the bulges
progress around the planet. Where the bulges encounter land, there
is friction, which slows the earth’s rotation very gradually.

1.2 Energy
The analysis based on friction is somewhat superficial, however. One
could understand friction perfectly well and yet imagine the follow-
ing situation. Astronauts bring back a piece of magnetic ore from
the moon which does not behave like ordinary magnets. A normal
bar magnet, c/1, attracts a piece of iron essentially directly toward
it, and has no left- or right-handedness. The moon rock, however,
exerts forces that form a whirlpool pattern around it, 2. NASA
goes to a machine shop and has the moon rock put in a lathe and
machined down to a smooth cylinder, 3. If we now release a ball
bearing on the surface of the cylinder, the magnetic force whips it
around and around at ever higher speeds. Of course there is some
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c / A mysterious moon rock
makes a perpetual motion
machine.

d / Example 1.

friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a
moon rock, not just because it breaks the rules that magnets nor-
mally obey but because, like the alchemists, they have discovered
a very deep and fundamental principle of nature which forbids cer-
tain things from happening. The first alchemist who deserved to
be called a chemist was the one who realized one day, “In all these
attempts to create gold where there was none before, all I’ve been
doing is shuffling the same atoms back and forth among different
test tubes. The only way to increase the amount of gold in my lab-
oratory is to bring some in through the door.” It was like having
some of your money in a checking account and some in a savings ac-
count. Transferring money from one account into the other doesn’t
change the total amount.

We say that the number of grams of gold is a conserved quan-
tity. In this context, the word “conserve” does not have its usual
meaning of trying not to waste something. In physics, a conserved
quantity is something that you wouldn’t be able to get rid of even
if you wanted to. Conservation laws in physics always refer to a
closed system, meaning a region of space with boundaries through
which the quantity in question is not passing. In our example, the
alchemist’s laboratory is a closed system because no gold is coming
in or out through the doors.

Conservation of mass example 1
In figure d, the stream of water is fatter near the mouth of the
faucet, and skinnier lower down. This is because the water speeds
up as it falls. If the cross-sectional area of the stream was equal
all along its length, then the rate of flow through a lower cross-
section would be greater than the rate of flow through a cross-
section higher up. Since the flow is steady, the amount of wa-
ter between the two cross-sections stays constant. The cross-
sectional area of the stream must therefore shrink in inverse pro-
portion to the increasing speed of the falling water. This is an
example of conservation of mass.

In general, the amount of any particular substance is not con-
served. Chemical reactions can change one substance into another,
and nuclear reactions can even change one element into another.
The total mass of all substances is however conserved:

the law of conservation of mass
The total mass of a closed system always remains constant. Energy
cannot be created or destroyed, but only transferred from one system
to another.

A similar lightbulb eventually lit up in the heads of the people
who had been frustrated trying to build a perpetual motion machine.
In perpetual motion machine a, consider the motion of one of the
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balls. It performs a cycle of rising and falling. On the way down it
gains speed, and coming up it slows back down. Having a greater
speed is like having more money in your checking account, and being
high up is like having more in your savings account. The device is
simply shuffling funds back and forth between the two. Having more
balls doesn’t change anything fundamentally. Not only that, but
friction is always draining off money into a third “bank account:”
heat. The reason we rub our hands together when we’re cold is that
kinetic friction heats things up. The continual buildup in the “heat
account” leaves less and less for the “motion account” and “height
account,” causing the machine eventually to run down.

These insights can be distilled into the following basic principle
of physics:

the law of conservation of energy
It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up contri-
butions from characteristics of the system such as motion of objects
in it, heating of the objects, and the relative positions of objects
that interact via forces. The total energy of a closed system always
remains constant. Energy cannot be created or destroyed, but only
transferred from one system to another.

The moon rock story violates conservation of energy because the
rock-cylinder and the ball together constitute a closed system. Once
the ball has made one revolution around the cylinder, its position
relative to the cylinder is exactly the same as before, so the numer-
ical energy rating associated with its position is the same as before.
Since the total amount of energy must remain constant, it is im-
possible for the ball to have a greater speed after one revolution. If
it had picked up speed, it would have more energy associated with
motion, the same amount of energy associated with position, and a
little more energy associated with heating through friction. There
cannot be a net increase in energy.

Converting one form of energy to another example 2
Dropping a rock: The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is trans-
formed into energy of motion, except for a small amount lost to
heat created by air friction.

Sliding in to home base: The runner’s energy of motion is nearly
all converted into heat via friction with the ground.

Accelerating a car: The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%
of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by the
exhaust.

16 Chapter 1 Conservation of Energy



e / Example 3.

Cruising in a car: As you cruise at constant speed in your car, all
the energy of the burning gas is being converted into heat. The
tires and engine get hot, and heat is also dissipated into the air
through the radiator and the exhaust.

Stepping on the brakes: All the energy of the car’s motion is con-
verted into heat in the brake shoes.
Stevin’s machine example 3
The Dutch mathematician and engineer Simon Stevin proposed

the imaginary machine shown in figure e, which he had inscribed
on his tombstone. This is an interesting example, because it
shows a link between the force concept used earlier in this course,
and the energy concept being developed now.

The point of the imaginary machine is to show the mechanical
advantage of an inclined plane. In this example, the triangle has
the proportions 3-4-5, but the argument works for any right trian-
gle. We imagine that the chain of balls slides without friction, so
that no energy is ever converted into heat. If we were to slide
the chain clockwise by one step, then each ball would take the
place of the one in front of it, and the over all configuration would
be exactly the same. Since energy is something that only de-
pends on the state of the system, the energy would have to be
the same. Similarly for a counterclockwise rotation, no energy of
position would be released by gravity. This means that if we place
the chain on the triangle, and release it at rest, it can’t start mov-
ing, because there would be no way for it to convert energy of
position into energy of motion. Thus the chain must be perfectly
balanced. Now by symmetry, the arc of the chain hanging under-
neath the triangle has equal tension at both ends, so removing
this arc wouldn’t affect the balance of the rest of the chain. This
means that a weight of three units hanging vertically balances a
weight of five units hanging diagonally along the hypotenuse.

The mechanical advantage of the inclined plane is therefore 5/3,
which is exactly the same as the result, 1/ sin θ, that we got be-
fore by analyzing force vectors. What this shows is that New-
ton’s laws and conservation laws are not logically separate, but
rather are very closely related descriptions of nature. In the cases
where Newton’s laws are true, they give the same answers as
the conservation laws. This is an example of a more general
idea, called the correspondence principle, about how science pro-
gresses over time. When a newer, more general theory is pro-
posed to replace an older theory, the new theory must agree with
the old one in the realm of applicability of the old theory, since
the old theory only became a accepted as a valid theory by be-
ing verified experimentally in a variety of experiments. In other
words, the new theory must be backward-compatible with the old
one. Even though conservation laws can prove things that New-
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Discussion question A. The
water behind the Hoover Dam
has energy because of its posi-
tion relative to the planet earth,
which is attracting it with a gravi-
tational force. Letting water down
to the bottom of the dam converts
that energy into energy of motion.
When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and
its energy of motion is converted
into electrical energy.

ton’s laws can’t (that perpetual motion is impossible, for example),
they aren’t going to disprove Newton’s laws when applied to me-
chanical systems where we already knew Newton’s laws were
valid.

Discussion Question

A Hydroelectric power (water flowing over a dam to spin turbines)
appears to be completely free. Does this violate conservation of energy?
If not, then what is the ultimate source of the electrical energy produced
by a hydroelectric plant?

B How does the proof in example 3 fail if the assumption of a frictionless
surface doesn’t hold?

1.3 A Numerical Scale of Energy
Energy comes in a variety of forms, and physicists didn’t discover all
of them right away. They had to start somewhere, so they picked
one form of energy to use as a standard for creating a numerical
energy scale. (In fact the history is complicated, and several different
energy units were defined before it was realized that there was a
single general energy concept that deserved a single consistent unit
of measurement.) One practical approach is to define an energy
unit based on heating water. The SI unit of energy is the joule,
J, (rhymes with “cool”), named after the British physicist James
Joule. One Joule is the amount of energy required in order to heat
0.24 g of water by 1 ◦C. The number 0.24 is not worth memorizing.

Note that heat, which is a form of energy, is completely differ-
ent from temperature, which is not. Twice as much heat energy
is required to prepare two cups of coffee as to make one, but two
cups of coffee mixed together don’t have double the temperature.
In other words, the temperature of an object tells us how hot it is,
but the heat energy contained in an object also takes into account
the object’s mass and what it is made of.1

Later we will encounter other quantities that are conserved in
physics, such as momentum and angular momentum, and the method
for defining them will be similar to the one we have used for energy:
pick some standard form of it, and then measure other forms by
comparison with this standard. The flexible and adaptable nature
of this procedure is part of what has made conservation laws such a
durable basis for the evolution of physics.

Heating a swimming pool example 4
. If electricity costs 3.9 cents per MJ (1 MJ = 1 megajoule = 106

J), how much does it cost to heat a 26000-gallon swimming pool

1In standard, formal terminology, there is another, finer distinction. The
word “heat” is used only to indicate an amount of energy that is transferred,
whereas “thermal energy” indicates an amount of energy contained in an object.
I’m informal on this point, and refer to both as heat, but you should be aware
of the distinction.

18 Chapter 1 Conservation of Energy



from 10 ◦C to 18 ◦C?

. Converting gallons to cm3 gives

26000 gallons× 3780 cm3

1 gallon
= 9.8× 107 cm3 .

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8 × 107 g. One joule is sufficient to heat 0.24 g
by 1 ◦C, so the energy needed to heat the swimming pool is

1 J× 9.8× 107 g
0.24 g

× 8 ◦C
1 ◦C

= 3.3× 109 J

= 3.3× 103 MJ .

The cost of the electricity is (3.3× 103 MJ)($0.039/MJ)=$130.

Irish coffee example 5
. You make a cup of Irish coffee out of 300 g of coffee at 100 ◦C
and 30 g of pure ethyl alcohol at 20 ◦C. One Joule is enough
energy to produce a change of 1 ◦C in 0.42 g of ethyl alcohol (i.e.,
alcohol is easier to heat than water). What temperature is the
final mixture?

. Adding up all the energy after mixing has to give the same result
as the total before mixing. We let the subscript i stand for the
initial situation, before mixing, and f for the final situation, and use
subscripts c for the coffee and a for the alcohol. In this notation,
we have

total initial energy = total final energy
Eci + Eai = Ecf + Eaf .

We assume coffee has the same heat-carrying properties as wa-
ter. Our information about the heat-carrying properties of the two
substances is stated in terms of the change in energy required for
a certain change in temperature, so we rearrange the equation to
express everything in terms of energy differences:

Eaf − Eai = Eci − Ecf .

Using the given ratios of temperature change to energy change,
we have

Eci − Ecf = (Tci − Tcf )(mc)/(0.24 g)
Eaf − Eai = (Taf − Tai )(ma)/(0.42 g)

Setting these two quantities to be equal, we have

(Taf − Tai )(ma)/(0.42 g) = (Tci − Tcf )(mc)/(0.24 g) .

Section 1.3 A Numerical Scale of Energy 19



In the final mixture the two substances must be at the same tem-
perature, so we can use a single symbol Tf = Tcf = Taf for the
two quantities previously represented by two different symbols,

(Tf − Tai )(ma)/(0.42 g) = (Tci − Tf )(mc)/(0.24 g) .

Solving for Tf gives

Tf =
Tci

mc
0.24 + Tai

ma
0.42

mc
0.24 + ma

0.42

= 96 ◦C .

Once a numerical scale of energy has been established for some
form of energy such as heat, it can easily be extended to other types
of energy. For instance, the energy stored in one gallon of gasoline
can be determined by putting some gasoline and some water in an
insulated chamber, igniting the gas, and measuring the rise in the
water’s temperature. (The fact that the apparatus is known as a
“bomb calorimeter” will give you some idea of how dangerous these
experiments are if you don’t take the right safety precautions.) Here
are some examples of other types of energy that can be measured
using the same units of joules:

type of energy example
chemical energy
released by burning

About 50 MJ are released by burning
a kg of gasoline.

energy required to
break an object

When a person suffers a spiral frac-
ture of the thighbone (a common
type in skiing accidents), about 2 J
of energy go into breaking the bone.

energy required to
melt a solid substance

7 MJ are required to melt 1 kg of tin.

chemical energy
released by digesting
food

A bowl of Cheeries with milk provides
us with about 800 kJ of usable en-
ergy.

raising a mass against
the force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy
released in fission

1 kg of uranium oxide fuel consumed
by a reactor releases 2 × 1012 J of
stored nuclear energy.

It is interesting to note the disproportion between the megajoule
energies we consume as food and the joule-sized energies we expend
in physical activities. If we could perceive the flow of energy around
us the way we perceive the flow of water, eating a bowl of cereal
would be like swallowing a bathtub’s worth of energy, the continual
loss of body heat to one’s environment would be like an energy-hose
left on all day, and lifting a bag of cement would be like flicking
it with a few tiny energy-drops. The human body is tremendously
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f / Example 6.

inefficient. The calories we “burn” in heavy exercise are almost all
dissipated directly as body heat.

You take the high road and I’ll take the low road. example 6
. Figure f shows two ramps which two balls will roll down. Com-
pare their final speeds, when they reach point B. Assume friction
is negligible.

. Each ball loses some energy because of its decreasing height
above the earth, and conservation of energy says that it must gain
an equal amount of energy of motion (minus a little heat created
by friction). The balls lose the same amount of height, so their
final speeds must be equal.

It’s impressive to note the complete impossibility of solving this
problem using only Newton’s laws. Even if the shape of the track
had been given mathematically, it would have been a formidable
task to compute the balls’ final speed based on vector addition of
the normal force and gravitational force at each point along the way.

How new forms of energy are discovered

Textbooks often give the impression that a sophisticated physics
concept was created by one person who had an inspiration one day,
but in reality it is more in the nature of science to rough out an idea
and then gradually refine it over many years. The idea of energy
was tinkered with from the early 1800’s on, and new types of energy
kept getting added to the list.

To establish the existence of a new form of energy, a physicist
has to

(1) show that it could be converted to and from other forms of
energy; and

(2) show that it related to some definite measurable property of
the object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in
water, so apparently there is some form of energy already stored in
the iron. The release of this energy can also be related to a definite
measurable property of the chunk of metal: it turns reddish-orange.
There has been a chemical change in its physical state, which we
call rusting.

Although the list of types of energy kept getting longer and
longer, it was clear that many of the types were just variations on
a theme. There is an obvious similarity between the energy needed
to melt ice and to melt butter, or between the rusting of iron and
many other chemical reactions. The topic of the next chapter is
how this process of simplification reduced all the types of energy
to a very small number (four, according to the way I’ve chosen to
count them).

Section 1.3 A Numerical Scale of Energy 21



It might seem that if the principle of conservation of energy ever
appeared to be violated, we could fix it up simply by inventing some
new type of energy to compensate for the discrepancy. This would
be like balancing your checkbook by adding in an imaginary deposit
or withdrawal to make your figures agree with the bank’s statements.
Step (2) above guards against this kind of chicanery. In the 1920s
there were experiments that suggested energy was not conserved in
radioactive processes. Precise measurements of the energy released
in the radioactive decay of a given type of atom showed inconsistent
results. One atom might decay and release, say, 1.1 × 10−10 J of
energy, which had presumably been stored in some mysterious form
in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2× 10−10 J. Atoms of the same type are
supposed to be identical, so both atoms were thought to have started
out with the same energy. If the amount released was random, then
apparently the total amount of energy was not the same after the
decay as before, i.e., energy was not conserved.

Only later was it found that a previously unknown particle,
which is very hard to detect, was being spewed out in the decay.
The particle, now called a neutrino, was carrying off some energy,
and if this previously unsuspected form of energy was added in,
energy was found to be conserved after all. The discovery of the
energy discrepancies is seen with hindsight as being step (1) in the
establishment of a new form of energy, and the discovery of the neu-
trino was step (2). But during the decade or so between step (1)
and step (2) (the accumulation of evidence was gradual), physicists
had the admirable honesty to admit that the cherished principle of
conservation of energy might have to be discarded.

self-check A
How would you carry out the two steps given above in order to estab-
lish that some form of energy was stored in a stretched or compressed
spring? . Answer, p. 166

Mass Into Energy
Einstein showed that mass itself could be converted to and from energy,
according to his celebrated equation E = mc2, in which c is the speed
of light. We thus speak of mass as simply another form of energy, and
it is valid to measure it in units of joules. The mass of a 15-gram pen-
cil corresponds to about 1.3 × 1015 J. The issue is largely academic in
the case of the pencil, because very violent processes such as nuclear
reactions are required in order to convert any significant fraction of an
object’s mass into energy. Cosmic rays, however, are continually strik-
ing you and your surroundings and converting part of their energy of
motion into the mass of newly created particles. A single high-energy
cosmic ray can create a “shower” of millions of previously nonexistent
particles when it strikes the atmosphere. Einstein’s theories are dis-
cussed in book 6 of this series.

Even today, when the energy concept is relatively mature and sta-
ble, a new form of energy has been proposed based on observations
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of distant galaxies whose light began its voyage to us billions of years
ago. Astronomers have found that the universe’s continuing expansion,
resulting from the Big Bang, has not been decelerating as rapidly in the
last few billion years as would have been expected from gravitational
forces. They suggest that a new form of energy may be at work.

Discussion Question

A I’m not making this up. XS Energy Drink has ads that read like this:
All the “Energy” ... Without the Sugar! Only 8 Calories! Comment on
this.

1.4 Kinetic Energy
The technical term for the energy associated with motion is kinetic
energy, from the Greek word for motion. (The root is the same as
the root of the word “cinema” for a motion picture, and in French
the term for kinetic energy is “énergie cinétique.”) To find how
much kinetic energy is possessed by a given moving object, we must
convert all its kinetic energy into heat energy, which we have chosen
as the standard reference type of energy. We could do this, for
example, by firing projectiles into a tank of water and measuring the
increase in temperature of the water as a function of the projectile’s
mass and velocity. Consider the following data from a series of three
such experiments:

m (kg) v (m/s) energy (J)
1.00 1.00 0.50
1.00 2.00 2.00
2.00 1.00 1.00

Comparing the first experiment with the second, we see that dou-
bling the object’s velocity doesn’t just double its energy, it quadru-
ples it. If we compare the first and third lines, however, we find
that doubling the mass only doubles the energy. This suggests that
kinetic energy is proportional to mass and to the square of veloc-
ity, KE ∝ mv2, and further experiments of this type would indeed
establish such a general rule. The proportionality factor equals 0.5
because of the design of the metric system, so the kinetic energy of
a moving object is given by

KE =
1
2
mv2 .

The metric system is based on the meter, kilogram, and second,
with other units being derived from those. Comparing the units on
the left and right sides of the equation shows that the joule can be
reexpressed in terms of the basic units as kg·m2/s2.

Students are often mystified by the occurrence of the factor of
1/2, but it is less obscure than it looks. The metric system was
designed so that some of the equations relating to energy would
come out looking simple, at the expense of some others, which had
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to have inconvenient conversion factors in front. If we were using
the old British Engineering System of units in this course, then we’d
have the British Thermal Unit (BTU) as our unit of energy. In
that system, the equation you’d learn for kinetic energy would have
an inconvenient proportionality constant, KE =

(
1.29× 10−3

)
mv2,

with KE measured in units of BTUs, v measured in feet per second,
and so on. At the expense of this inconvenient equation for kinetic
energy, the designers of the British Engineering System got a simple
rule for calculating the energy required to heat water: one BTU
per degree Fahrenheit per gallon. The inventor of kinetic energy,
Thomas Young, actually defined it as KE = mv2, which meant
that all his other equations had to be different from ours by a factor
of two. All these systems of units work just fine as long as they are
not combined with one another in an inconsistent way.

Energy released by a comet impact example 7
.Comet Shoemaker-Levy, which struck the planet Jupiter in 1994,
had a mass of roughly 4 × 1013 kg, and was moving at a speed
of 60 km/s. Compare the kinetic energy released in the impact to
the total energy in the world’s nuclear arsenals, which is 2× 1019

J. Assume for the sake of simplicity that Jupiter was at rest.

. Since we assume Jupiter was at rest, we can imagine that the
comet stopped completely on impact, and 100% of its kinetic en-
ergy was converted to heat and sound. We first convert the speed
to mks units, v = 6 × 104 m/s, and then plug in to the equation
to find that the comet’s kinetic energy was roughly 7 × 1022 J, or
about 3000 times the energy in the world’s nuclear arsenals.

Is there any way to derive the equation KE = (1/2)mv2 math-
ematically from first principles? No, it is purely empirical. The
factor of 1/2 in front is definitely not derivable, since it is different
in different systems of units. The proportionality to v2 is not even
quite correct; experiments have shown deviations from the v2 rule at
high speeds, an effect that is related to Einstein’s theory of relativ-
ity. Only the proportionality to m is inevitable. The whole energy
concept is based on the idea that we add up energy contributions
from all the objects within a system. Based on this philosophy, it
is logically necessary that a 2-kg object moving at 1 m/s have the
same kinetic energy as two 1-kg objects moving side-by-side at the
same speed.

Energy and relative motion

Although I mentioned Einstein’s theory of relativity above, it’s
more relevant right now to consider how conservation of energy re-
lates to the simpler Galilean idea, which we’ve already studied, that
motion is relative. Galileo’s Aristotelian enemies (and it is no ex-
aggeration to call them enemies!) would probably have objected to
conservation of energy. After all, the Galilean idea that an object
in motion will continue in motion indefinitely in the absence of a
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Discussion question B

force is not so different from the idea that an object’s kinetic energy
stays the same unless there is a mechanism like frictional heating
for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what
we’ve learned so far about energy is strictly mathematically consis-
tent with the principle that motion is relative. Suppose we verify
that a certain process, say the collision of two pool balls, conserves
energy as measured in a certain frame of reference: the sum of the
balls’ kinetic energies before the collision is equal to their sum after
the collision. (In reality we’d need to add in other forms of energy,
like heat and sound, that are liberated by the collision, but let’s keep
it simple.) But what if we were to measure everything in a frame of
reference that was in a different state of motion? A particular pool
ball might have less kinetic energy in this new frame; for example, if
the new frame of reference was moving right along with it, its kinetic
energy in that frame would be zero. On the other hand, some other
balls might have a greater kinetic energy in the new frame. It’s not
immediately obvious that the total energy before the collision will
still equal the total energy after the collision. After all, the equation
for kinetic energy is fairly complicated, since it involves the square
of the velocity, so it would be surprising if everything still worked
out in the new frame of reference. It does still work out. Homework
problem 13 in this chapter gives a simple numerical example, and
the general proof is taken up in ch. 4, problem 15 (with the solution
given in the back of the book).

Discussion Questions

A Suppose that, like Young or Einstein, you were trying out different
equations for kinetic energy to see if they agreed with the experimental
data. Based on the meaning of positive and negative signs of velocity,
why would you suspect that a proportionality to mv would be less likely
than mv2?
B The figure shows a pendulum that is released at A and caught by a
peg as it passes through the vertical, B. To what height will the bob rise
on the right?

1.5 Power
A car may have plenty of energy in its gas tank, but still may not
be able to increase its kinetic energy rapidly. A Porsche doesn’t
necessarily have more energy in its gas tank than a Hyundai, it is
just able to transfer it more quickly. The rate of transferring energy
from one form to another is called power. The definition can be
written as an equation,

P =
∆E
∆t

,

where the use of the delta notation in the symbol ∆E has the usual
interpretation: the final amount of energy in a certain form minus
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the initial amount that was present in that form. Power has units
of J/s, which are abbreviated as watts, W (rhymes with “lots”).

If the rate of energy transfer is not constant, the power at any
instant can be defined as the slope of the tangent line on a graph of
E versus t. Likewise ∆E can be extracted from the area under the
P -versus-t curve.

Converting kilowatt-hours to joules example 8
. The electric company bills you for energy in units of kilowatt-
hours (kilowatts multiplied by hours) rather than in SI units of
joules. How many joules is a kilowatt-hour?

. 1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Human wattage example 9
. A typical person consumes 2000 kcal of food in a day, and con-
verts nearly all of that directly to heat. Compare the person’s heat
output to the rate of energy consumption of a 100-watt lightbulb.

. Looking up the conversion factor from calories to joules, we find

∆E = 2000 kcal× 1000 cal
1 kcal

× 4.18 J
1 cal

= 8× 106 J

for our daily energy consumption. Converting the time interval
likewise into mks,

∆t = 1 day× 24 hours
1 day

× 60 min
1 hour

× 60 s
1 min

= 9× 104 s .

Dividing, we find that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.

It is easy to confuse the concepts of force, energy, and power,
especially since they are synonyms in ordinary speech. The table on
the following page may help to clear this up:
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force energy power
conceptual
definition

A force is an interaction
between two objects that
causes a push or a pull.
A force can be defined as
anything that is capable
of changing an object’s
state of motion.

Heating an object, mak-
ing it move faster, or in-
creasing its distance from
another object that is at-
tracting it are all exam-
ples of things that would
require fuel or physical ef-
fort. All these things can
be quantified using a sin-
gle scale of measurement,
and we describe them all
as forms of energy.

Power is the rate at
which energy is trans-
formed from one form
to another or transferred
from one object to an-
other.

operational
definition

A spring scale can be used
to measure force.

If we define a unit of en-
ergy as the amount re-
quired to heat a certain
amount of water by a
1 ◦C, then we can mea-
sure any other quantity
of energy by transferring
it into heat in water and
measuring the tempera-
ture increase.

Measure the change in the
amount of some form of
energy possessed by an
object, and divide by the
amount of time required
for the change to occur.

scalar or
vector?

vector — has a direction
in space which is the di-
rection in which it pulls or
pushes

scalar — has no direction
in space

scalar — has no direction
in space

unit newtons (N) joules (J) watts (W) = joules/s
Can it run
out? Does it
cost money?

No. I don’t have to
pay a monthly bill for
the meganewtons of force
required to hold up my
house.

Yes. We pay money for
gasoline, electrical energy,
batteries, etc., because
they contain energy.

More power means you
are paying money at a
higher rate. A 100-W
lightbulb costs a certain
number of cents per hour.

Can it be a
property of
an object?

No. A force is a rela-
tionship between two
interacting objects.
A home-run baseball
doesn’t “have” force.

Yes. What a home-run
baseball has is kinetic en-
ergy, not force.

Not really. A 100-W
lightbulb doesn’t “have”
100 W. 100 J/s is the rate
at which it converts elec-
trical energy into light.
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Summary
Selected Vocabulary
energy . . . . . . A numerical scale used to measure the heat,

motion, or other properties that would require
fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

power . . . . . . . The rate of transferring energy; a scalar quan-
tity with units of watts (W).

kinetic energy . . The energy an object possesses because of its
motion.

heat . . . . . . . . A form of energy that relates to temperature.
Heat is different from temperature because an
object with twice as much mass requires twice
as much heat to increase its temperature by
the same amount. Heat is measured in joules,
temperature in degrees. (In standard termi-
nology, there is another, finer distinction be-
tween heat and thermal energy, which is dis-
cussed below. In this book, I informally refer
to both as heat.)

temperature . . . What a thermometer measures. Objects left in
contact with each other tend to reach the same
temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially
a measure of the average kinetic energy per
molecule.

Notation
E . . . . . . . . . energy
J . . . . . . . . . . joules, the SI unit of energy
KE . . . . . . . . kinetic energy
P . . . . . . . . . power
W . . . . . . . . . watts, the SI unit of power; equivalent to J/s

Other Terminology and Notation
Q or ∆Q . . . . . the amount of heat transferred into or out of

an object
K or T . . . . . . alternative symbols for kinetic energy, used in

the scientific literature and in most advanced
textbooks

thermal energy . Careful writers make a distinction between
heat and thermal energy, but the distinction
is often ignored in casual speech, even among
physicists. Properly, thermal energy is used
to mean the total amount of energy possessed
by an object, while heat indicates the amount
of thermal energy transferred in or out. The
term heat is used in this book to include both
meanings.
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Summary

Heating an object, making it move faster, or increasing its dis-
tance from another object that is attracting it are all examples of
things that would require fuel or physical effort. making it move
faster, or increasing its distance from another object that is attract-
ing it are all examples of things that would require fuel or physical
effort. All these things can be quantified using a single scale of
measurement, and we describe them all as forms of energy. The
SI unit of energy is the Joule. The reason why energy is a useful
and important quantity is that it is always conserved. That is, it
cannot be created or destroyed but only transferred between objects
or changed from one form to another. Conservation of energy is the
most important and broadly applicable of all the laws of physics,
more fundamental and general even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree
of temperature and per unit mass, which depends on the substance
of which the object consists. Heat and temperature are completely
different things. Heat is a form of energy, and its SI unit is the joule
(J). Temperature is not a measure of energy. Heating twice as much
of something requires twice as much heat, but double the amount
of a substance does not have double the temperature.

The energy that an object possesses because of its motion is
called kinetic energy. Kinetic energy is related to the mass of the
object and the magnitude of its velocity vector by the equation

KE =
1
2
mv2 .

Power is the rate at which energy is transformed from one form
to another or transferred from one object to another,

P =
∆E
∆t

. [only for constant power]

The SI unit of power is the watt (W).
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 This problem is now problem 14 in chapter 2, on page 47.

2 Can kinetic energy ever be less than zero? Explain. [Based
on a problem by Serway and Faughn.]

3 Estimate the kinetic energy of an Olympic sprinter.

4 You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you’re going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds?

√

5 A closed system can be a bad thing — for an astronaut
sealed inside a space suit, getting rid of body heat can be difficult.
Suppose a 60-kg astronaut is performing vigorous physical activity,
expending 200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6 ◦C(11 ◦F), an amount sufficient to kill her? Assume that the
amount of heat required to raise her body temperature by 1 ◦C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes.

√

6 All stars, including our sun, show variations in their light
output to some degree. Some stars vary their brightness by a factor
of two or even more, but our sun has remained relatively steady dur-
ing the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun’s light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to flood all the world’s coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 × 1016 watts.
Presently, this heat input to the poles is balanced by the loss of
heat via winds, ocean currents, and emission of infrared light, so
that there is no net melting or freezing of ice at the poles from year
to year. Suppose that the sun changes its light output by some small
percentage, but there is no change in the rate of heat loss by the
polar caps. Estimate the percentage by which the sun’s light output
would have to increase in order to melt enough ice to raise the level
of the oceans by 10 meters over a period of 10 years. (This would be
enough to flood New York, London, and many other cities.) Melting
1 kg of ice requires 3× 103 J.
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7 A bullet flies through the air, passes through a paperback
book, and then continues to fly through the air beyond the book.
When is there a force? When is there energy?

. Solution, p. 167

8 Experiments show that the power consumed by a boat’s en-
gine is approximately proportional to third power of its speed. (We
assume that it is moving at constant speed.) (a) When a boat is crus-
ing at constant speed, what type of energy transformation do you
think is being performed? (b) If you upgrade to a motor with double
the power, by what factor is your boat’s crusing speed increased?
[Based on a problem by Arnold Arons.] . Solution, p. 167

9 Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B’s kinetic energy? [Based on a
problem by Arnold Arons.] . Solution, p. 167

10 The moon doesn’t really just orbit the Earth. By Newton’s
third law, the moon’s gravitational force on the earth is the same as
the earth’s force on the moon, and the earth must respond to the
moon’s force by accelerating. If we consider the earth in moon in
isolation and ignore outside forces, then Newton’s first law says their
common center of mass doesn’t accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon’s mass is 81
times smaller than the earth’s. Compare the kinetic energies of the
earth and moon. (We know that the center of mass is a kind of
balance point, so it must be closer to the earth than to the moon.
In fact, the distance from the earth to the center of mass is 1/81
of the distance from the moon to the center of mass, which makes
sense intuitively, and can be proved rigorously using the equation
on page 89.)

11 My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going? . Solution, p. 167
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12 The multiflash photograph shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark
image in its initial position, because its image was exposed several
times before it was struck and began moving. By making measure-
ments on the figure, determine whether or not energy appears to
have been conserved in the collision. What systematic effects would
limit the accuracy of your test? [From an example in PSSC Physics.]

Problem 12.

13 This problem is a numerical example of the imaginary exper-
iment discussed at the end of section 1.4 regarding the relationship
between energy and relative motion. Let’s say that the pool balls
both have masses of 1.00 kg. Suppose that in the frame of reference
of the pool table, the cue ball moves at a speed of 1.00 m/s toward
the eight ball, which is initially at rest. The collision is head-on, and
as you can verify for yourself the next time you’re playing pool, the
result of such a collision is that the incoming ball stops dead and
the ball that was struck takes off with the same speed originally
possessed by the incoming ball. (This is actually a bit of an ideal-
ization. To keep things simple, we’re ignoring the spin of the balls,
and we assume that no energy is liberated by the collision as heat or
sound.) (a) Calculate the total initial kinetic energy and the total
final kinetic energy, and verify that they are equal. (b) Now carry
out the whole calculation again in the frame of reference that is
moving in the same direction that the cue ball was initially moving,
but at a speed of 0.50 m/s. In this frame of reference, both balls
have nonzero initial and final velocities, which are different from
what they were in the table’s frame. [See also homework problem
15 in ch. 4.]

14 One theory about the destruction of the space shuttle Columbia
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in 2003 is that one of its wings had been damaged on liftoff by a
chunk of foam insulation that fell off of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engi-
neers had recreated the impact to see if it would damage a mock-up
of the shuttle’s wing. “Before last week’s test, many engineers at
NASA said they thought lightweight foam could not harm the seem-
ingly tough composite panels, and privately predicted that the foam
would bounce off harmlessly, like a Nerf ball.” In fact, the 1.7-pound
piece of foam, moving at 531 miles per hour, did serious damage.
A member of the board investigating the disaster said this demon-
strated that “people’s intuitive sense of physics is sometimes way
off.” (a) Compute the kinetic energy of the foam, and (b) compare
with the energy of a 170-pound boulder moving at 5.3 miles per
hour (the speed it would have if you dropped it from about knee-
level). (c) The boulder is a hundred times more massive, but its
speed is a hundred times smaller, so what’s counterintuitive about
your results?

15 The figure above is from a classic 1920 physics textbook
by Millikan and Gale. It represents a method for raising the water
from the pond up to the water tower, at a higher level, without
using a pump. Water is allowed into the drive pipe, and once it is
flowing fast enough, it forces the valve at the bottom closed. Explain
how this works in terms of conservation of mass and energy. (Cf.
example 1 on page 15.)
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Do these forms of energy have anything in common?

Chapter 2

Simplifying the Energy Zoo

Variety is the spice of life, not of science. The figure shows a few
examples from the bewildering array of forms of energy that sur-
rounds us. The physicist’s psyche rebels against the prospect of a
long laundry list of types of energy, each of which would require
its own equations, concepts, notation, and terminology. The point
at which we’ve arrived in the study of energy is analogous to the
period in the 1960’s when a half a dozen new subatomic particles
were being discovered every year in particle accelerators. It was an
embarrassment. Physicists began to speak of the “particle zoo,”
and it seemed that the subatomic world was distressingly complex.
The particle zoo was simplified by the realization that most of the
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new particles being whipped up were simply clusters of a previously
unsuspected set of more fundamental particles (which were whimsi-
cally dubbed quarks, a made-up word from a line of poetry by James
Joyce, “Three quarks for Master Mark.”) The energy zoo can also
be simplified, and it is the purpose of this chapter to demonstrate
the hidden similarities between forms of energy as seemingly differ-
ent as heat and motion.

a / A vivid demonstration that
heat is a form of motion. A small
amount of boiling water is poured
into the empty can, which rapidly
fills up with hot steam. The can
is then sealed tightly, and soon
crumples. This can be explained
as follows. The high tempera-
ture of the steam is interpreted as
a high average speed of random
motions of its molecules. Before
the lid was put on the can, the
rapidly moving steam molecules
pushed their way out of the can,
forcing the slower air molecules
out of the way. As the steam in-
side the can thinned out, a sta-
ble situation was soon achieved,
in which the force from the less
dense steam molecules moving
at high speed balanced against
the force from the more dense but
slower air molecules outside. The
cap was put on, and after a while
the steam inside the can reached
the same temperature as the air
outside. The force from the cool,
thin steam no longer matched the
force from the cool, dense air out-
side, and the imbalance of forces
crushed the can.

2.1 Heat is Kinetic Energy
What is heat really? Is it an invisible fluid that your bare feet soak
up from a hot sidewalk? Can one ever remove all the heat from an
object? Is there a maximum to the temperature scale?

The theory of heat as a fluid seemed to explain why colder ob-
jects absorbed heat from hotter ones, but once it became clear that
heat was a form of energy, it began to seem unlikely that a material
substance could transform itself into and out of all those other forms
of energy like motion or light. For instance, a compost pile gets hot,
and we describe this as a case where, through the action of bacteria,
chemical energy stored in the plant cuttings is transformed into heat
energy. The heating occurs even if there is no nearby warmer object
that could have been leaking “heat fluid” into the pile.

An alternative interpretation of heat was suggested by the theory
that matter is made of atoms. Since gases are thousands of times less
dense than solids or liquids, the atoms (or clusters of atoms called
molecules) in a gas must be far apart. In that case, what is keeping
all the air molecules from settling into a thin film on the floor of the
room in which you are reading this book? The simplest explanation
is that they are moving very rapidly, continually ricocheting off of
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b / Random motion of atoms
in a gas, a liquid, and a solid.

the floor, walls, and ceiling. Though bizarre, the cloud-of-bullets
image of a gas did give a natural explanation for the surprising
ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules
into them. The inside of the tire gets hit by molecules more often
than the outside, forcing it to stretch and stiffen.

The outward forces of the air in your car’s tires increase even
further when you drive on the freeway for a while, heating up the
rubber and the air inside. This type of observation leads naturally
to the conclusion that hotter matter differs from colder in that its
atoms’ random motion is more rapid. In a liquid, the motion could
be visualized as people in a milling crowd shoving past each other
more quickly. In a solid, where the atoms are packed together, the
motion is a random vibration of each atom as it knocks against its
neighbors.

We thus achieve a great simplification in the theory of heat. Heat
is simply a form of kinetic energy, the total kinetic energy of random
motion of all the atoms in an object. With this new understanding,
it becomes possible to answer at one stroke the questions posed at
the beginning of the section. Yes, it is at least theoretically possible
to remove all the heat from an object. The coldest possible temper-
ature, known as absolute zero, is that at which all the atoms have
zero velocity, so that their kinetic energies, (1/2)mv2, are all zero.
No, there is no maximum amount of heat that a certain quantity of
matter can have, and no maximum to the temperature scale, since
arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of
the true nature of temperature. Temperature is a measure of the
amount of energy per molecule, whereas heat is the total amount of
energy possessed by all the molecules in an object.

There is an entire branch of physics, called thermodynamics,
that deals with heat and temperature and forms the basis for tech-
nologies such as refrigeration. Thermodynamics is discussed in more
detail in optional chapter A, and I have provided here only a brief
overview of the thermodynamic concepts that relate directly to en-
ergy, glossing over at least one point that would be dealt with more
carefully in a thermodynamics course: it is really only true for a
gas that all the heat is in the form of kinetic energy. In solids and
liquids, the atoms are close enough to each other to exert intense
electrical forces on each other, and there is therefore another type
of energy involved, the energy associated with the atoms’ distances
from each other. Strictly speaking, heat energy is defined not as
energy associated with random motion of molecules but as any form
of energy that can be conducted between objects in contact, without
any force.
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c / The skater has converted
all his kinetic energy into potential
energy on the way up the side of
the pool. Photo by J.D. Rogge,
www.sonic.net/∼shawn.

2.2 Potential Energy: Energy of Distance or
Closeness

We have already seen many examples of energy related to the dis-
tance between interacting objects. When two objects participate in
an attractive noncontact force, energy is required to bring them far-
ther apart. In both of the perpetual motion machines that started
off the previous chapter, one of the types of energy involved was the
energy associated with the distance between the balls and the earth,
which attract each other gravitationally. In the perpetual motion
machine with the magnet on the pedestal, there was also energy
associated with the distance between the magnet and the iron ball,
which were attracting each other.

The opposite happens with repulsive forces: two socks with the
same type of static electric charge will repel each other, and cannot
be pushed closer together without supplying energy.

In general, the term potential energy, with algebra symbol PE, is
used for the energy associated with the distance between two objects
that attract or repel each other via a force that depends on the
distance between them. Forces that are not determined by distance
do not have potential energy associated with them. For instance,
the normal force acts only between objects that have zero distance
between them, and depends on other factors besides the fact that
the distance is zero. There is no potential energy associated with
the normal force.

The following are some commonplace examples of potential en-
ergy:

gravitational potential energy: The skateboarder in the photo
has risen from the bottom of the pool, converting kinetic en-
ergy into gravitational potential energy. After being at rest
for an instant, he will go back down, converting PE back into
KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their dis-
tances from the earth’s north and south magnetic poles, con-
verting magnetic potential energy into kinetic energy. (Even-
tually the kinetic energy is all changed into heat by friction,
and the needle settles down in the position that minimizes its
potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is re-
quired in order to separate them.

potential energy of bending or stretching: The force between
the two ends of a spring depends on the distance between
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d / As the skater free-falls,
his PE is converted into KE. (The
numbers would be equally valid
as a description of his motion on
the way up.)

them, i.e., on the length of the spring. If a car is pressed
down on its shock absorbers and then released, the potential
energy stored in the spring is transformed into kinetic and
gravitational potential energy as the car bounces back up.

I have deliberately avoided introducing the term potential en-
ergy up until this point, because it tends to produce unfortunate
connotations in the minds of students who have not yet been inoc-
ulated with a careful description of the construction of a numerical
energy scale. Specifically, there is a tendency to generalize the term
inappropriately to apply to any situation where there is the “poten-
tial” for something to happen: “I took a break from digging, but
I had potential energy because I knew I’d be ready to work hard
again in a few minutes.”

An equation for gravitational potential energy

All the vital points about potential energy can be made by focus-
ing on the example of gravitational potential energy. For simplicity,
we treat only vertical motion, and motion close to the surface of the
earth, where the gravitational force is nearly constant. (The gener-
alization to the three dimensions and varying forces is more easily
accomplished using the concept of work, which is the subject the
next chapter.)

To find an equation for gravitational PE, we examine the case
of free fall, in which energy is transformed between kinetic energy
and gravitational PE. Whatever energy is lost in one form is gained
in an equal amount in the other form, so using the notation ∆KE
to stand for KEf −KEi and a similar notation for PE, we have

[1] ∆KE = −∆PEgrav .

It will be convenient to refer to the object as falling, so that PE
is being changed into KE, but the math applies equally well to an
object slowing down on its way up. We know an equation for kinetic
energy,

[2] KE =
1
2
mv2 ,

so if we can relate v to height, y, we will be able to relate ∆PE to y,
which would tell us what we want to know about potential energy.
The y component of the velocity can be connected to the height via
the constant acceleration equation

[3] v2
f = v2

i + 2a∆y ,

and Newton’s second law provides the acceleration,

[4] a = F/m ,

in terms of the gravitational force.
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The algebra is simple because both equation [2] and equation [3]
have velocity to the second power. Equation [2] can be solved for
v2 to give v2 = 2KE/m, and substituting this into equation [3], we
find

2
KEf

m
= 2

KEi

m
+ 2a∆y .

Making use of equations [1] and [4] gives the simple result

∆PEgrav = −F∆y . [change in gravitational PE
resulting from a change in height ∆y;

F is the gravitational force on the object,
i.e., its weight; valid only near the surface

of the earth, where F is constant]

Dropping a rock example 1
. If you drop a 1-kg rock from a height of 1 m, how many joules
of KE does it have on impact with the ground? (Assume that any
energy transformed into heat by air friction is negligible.)

. If we choose the y axis to point up, then Fy is negative, and
equals −(1 kg)(g) = −9.8 N. A decrease in y is represented by a
negative value of ∆y , ∆y = −1 m, so the change in potential en-
ergy is −(−9.8 N)(−1 m) ≈ −10 J. (The proof that newtons mul-
tiplied by meters give units of joules is left as a homework prob-
lem.) Conservation of energy says that the loss of this amount of
PE must be accompanied by a corresponding increase in KE of
10 J.

It may be dismaying to note how many minus signs had to be
handled correctly even in this relatively simple example: a total
of four. Rather than depending on yourself to avoid any mistakes
with signs, it is better to check whether the final result make sense
physically. If it doesn’t, just reverse the sign.

Although the equation for gravitational potential energy was de-
rived by imagining a situation where it was transformed into kinetic
energy, the equation can be used in any context, because all the
types of energy are freely convertible into each other.

Gravitational PE converted directly into heat example 2
. A 50-kg firefighter slides down a 5-m pole at constant velocity.
How much heat is produced?

. Since she slides down at constant velocity, there is no change
in KE. Heat and gravitational PE are the only forms of energy that
change. Ignoring plus and minus signs, the gravitational force on
her body equals mg, and the amount of energy transformed is

(mg)(5 m) = 2500 J .
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On physical grounds, we know that there must have been an in-
crease (positive change) in the heat energy in her hands and in
the flagpole.

Here are some questions and answers about the interpretation of
the equation ∆PEgrav = −F∆y for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in
the opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in po-
tential energy? Don’t I really want an equation for the potential
energy itself?
Answer: No, you really don’t. This relates to a basic fact about
potential energy, which is that it is not a well defined quantity in
the absolute sense. Only changes in potential energy are unambigu-
ously defined. If you and I both observe a rock falling, and agree
that it deposits 10 J of energy in the dirt when it hits, then we will
be forced to agree that the 10 J of KE must have come from a loss
of 10 joules of PE. But I might claim that it started with 37 J of PE
and ended with 27, while you might swear just as truthfully that it
had 109 J initially and 99 at the end. It is possible to pick some
specific height as a reference level and say that the PE is zero there,
but it’s easier and safer just to work with changes in PE and avoid
absolute PE altogether.

Question: You referred to potential energy as the energy that two
objects have because of their distance from each other. If a rock
falls, the object is the rock. Where’s the other object?
Answer: Newton’s third law guarantees that there will always be
two objects. The other object is the planet earth.

Question: If the other object is the earth, are we talking about the
distance from the rock to the center of the earth or the distance
from the rock to the surface of the earth?
Answer: It doesn’t matter. All that matters is the change in dis-
tance, ∆y, not y. Measuring from the earth’s center or its surface
are just two equally valid choices of a reference point for defining
absolute PE.

Question: Which object contains the PE, the rock or the earth?
Answer: We may refer casually to the PE of the rock, but techni-
cally the PE is a relationship between the earth and the rock, and
we should refer to the earth and the rock together as possessing the
PE.

Question: How would this be any different for a force other than
gravity?
Answer: It wouldn’t. The result was derived under the assumption
of constant force, but the result would be valid for any other situa-
tion where two objects interacted through a constant force. Gravity
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e / All these energy transfor-
mations turn out at the atomic
level to be changes in potential
energy resulting from changes in
the distances between atoms.

is unusual, however, in that the gravitational force on an object is
so nearly constant under ordinary conditions. The magnetic force
between a magnet and a refrigerator, on the other hand, changes
drastically with distance. The math is a little more complex for a
varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls
over. The pencil is simultaneously changing its height and rotating,
so the height change is different for different parts of the object.
The bottom of the pencil doesn’t lose any height at all. What do
you do in this situation?
Answer: The general philosophy of energy is that an object’s en-
ergy is found by adding up the energy of every little part of it.
You could thus add up the changes in potential energy of all the
little parts of the pencil to find the total change in potential en-
ergy. Luckily there’s an easier way! The derivation of the equation
for gravitational potential energy used Newton’s second law, which
deals with the acceleration of the object’s center of mass (i.e., its
balance point). If you just define ∆y as the height change of the
center of mass, everything works out. A huge Ferris wheel can be
rotated without putting in or taking out any PE, because its center
of mass is staying at the same height.

self-check A
A ball thrown straight up will have the same speed on impact with the
ground as a ball thrown straight down at the same speed. How can this
be explained using potential energy? . Answer, p. 166

Discussion Question

A You throw a steel ball up in the air. How can you prove based on
conservation of energy that it has the same speed when it falls back into
your hand? What if you throw a feather up — is energy not conserved in
this case?

2.3 All Energy is Potential or Kinetic
In the same way that we found that a change in temperature

is really only a change in kinetic energy at the atomic level, we
now find that every other form of energy turns out to be a form
of potential energy. Boiling, for instance, means knocking some of
the atoms (or molecules) out of the liquid and into the space above,
where they constitute a gas. There is a net attractive force between
essentially any two atoms that are next to each other, which is why
matter always prefers to be packed tightly in the solid or liquid state
unless we supply enough potential energy to pull it apart into a gas.
This explains why water stops getting hotter when it reaches the
boiling point: the power being pumped into the water by your stove
begins going into potential energy rather than kinetic energy.

As shown in figure e, every stored form of energy that we en-
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f / This figure looks similar to
the previous ones, but the scale
is a million times smaller. The
little balls are the neutrons and
protons that make up the tiny nu-
cleus at the center of the uranium
atom. When the nucleus splits
(fissions), the potential energy
change is partly electrical and
partly a change in the potential
energy derived from the force
that holds atomic nuclei together
(known as the strong nuclear
force).

g / A pellet of plutonium-238
glows with its own heat. Its
nuclear potential energy is being
converted into heat, a form of
kinetic energy. Pellets of this type
are used as power supplies on
some space probes.

counter in everyday life turns out to be a form of potential energy
at the atomic level. The forces between atoms are electrical and
magnetic in nature, so these are actually electrical and magnetic
potential energies.

Even if we wish to include nuclear reactions in the picture, there
still turn out to be only four fundamental types of energy:

kinetic energy (including heat)

gravitational potential energy

electrical and magnetic potential energy

nuclear potential energy

Astute students often ask me how light fits into this picture. This
is a very good question, and in fact it could be argued that it is the
basic question that led to Einstein’s theory of relativity as well as
the modern quantum picture of nature. Since these are topics for
books 4, 5, and 6 of this series, we will have to be content with half
an answer at this point. Essentially we may think of light energy
as a form of kinetic energy, but one for which kinetic energy is not
given by (1/2)mv2 but rather by some other equation. (We know
that (1/2)mv2 would not make sense, because light has no mass,
and furthermore, high-energy beams of light do not differ in speed
from low-energy ones.)
Discussion Question

A Referring back to the pictures at the beginning of the chapter, how
do all these forms of energy fit into the shortened list of categories given
above?

Section 2.3 All Energy is Potential or Kinetic 43



Summary
Selected Vocabulary
potential energy the energy having to do with the distance be-

tween to objects that interact via a noncontact
force

Notation
PE . . . . . . . . . potential energy

Other Terminology and Notation
U or V . . . . . . symbols used for potential energy in the scien-

tific literature and in most advanced textbooks

Summary

Historically, the energy concept was only invented to include a
few phenomena, but it was later generalized more and more to apply
to new situations, for example nuclear reactions. This generalizing
process resulted in an undesirably long list of types of energy, each
of which apparently behaved according to its own rules.

The first step in simplifying the picture came with the realization
that heat was a form of random motion on the atomic level, i.e., heat
was nothing more than the kinetic energy of atoms.

A second and even greater simplification was achieved with the
realization that all the other apparently mysterious forms of energy
actually had to do with changing the distances between atoms (or
similar processes in nuclei). This type of energy, which relates to
the distance between objects that interact via a force, is therefore
of great importance. We call it potential energy.

Most of the important ideas about potential energy can be un-
derstood by studying the example of gravitational potential energy.
The change in an object’s gravitational potential energy is given by

∆PEgrav = −Fgrav∆y , [if Fgrav is constant, i.e., the
the motion is all near the Earth’s surface]

The most important thing to understand about potential energy
is that there is no unambiguous way to define it in an absolute sense.
The only thing that everyone can agree on is how much the potential
energy has changed from one moment in time to some later moment
in time.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Can gravitational potential energy ever be negative? Note
that the question refers to PE, not ∆PE, so that you must think
about how the choice of a reference level comes into play. [Based on
a problem by Serway and Faughn.]

2 A ball rolls up a ramp, turns around, and comes back down.
When does it have the greatest gravitational potential energy? The
greatest kinetic energy? [Based on a problem by Serway and Faughn.]

3 (a) You release a magnet on a tabletop near a big piece of
iron, and the magnet leaps across the table to the iron. Does the
magnetic potential energy increase or decrease? Explain.
(b) Suppose instead that you have two repelling magnets. You give
them an initial push towards each other, so they decelerate while ap-
proaching each other. Does the magnetic potential energy increase
or decrease? Explain.

4 Let Eb be the energy required to boil one kg of water. (a) Find
an equation for the minimum height from which a bucket of water
must be dropped if the energy released on impact is to vaporize it.
Assume that all the heat goes into the water, not into the dirt it
strikes, and ignore the relatively small amount of energy required to
heat the water from room temperature to 100 ◦C. [Numerical check,
not for credit: Plugging in Eb = 2.3 MJ/kg should give a result of
230 km.]

√

(b) Show that the units of your answer in part a come out right
based on the units given for Eb.

5 A grasshopper with a mass of 110 mg falls from rest from a
height of 310 cm. On the way down, it dissipates 1.1 mJ of heat due
to air resistance. At what speed, in m/s, does it hit the ground?

. Solution, p. 168

6 A person on a bicycle is to coast down a ramp of height h and
then pass through a circular loop of radius r. What is the small-
est value of h for which the cyclist will complete the loop without
falling? (Ignore the kinetic energy of the spinning wheels.)

√
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Problem 7.

7 A skateboarder starts at nearly rest at the top of a giant
cylinder, and begins rolling down its side. (If he started exactly at
rest and exactly at the top, he would never get going!) Show that his
board loses contact with the pipe after he has dropped by a height
equal to one third the radius of the pipe. . Solution, p. 168 ?

8 (a) A circular hoop of mass m and radius r spins like a wheel
while its center remains at rest. Its period (time required for one
revolution) is T . Show that its kinetic energy equals 2π2mr2/T 2.
(b) If such a hoop rolls with its center moving at velocity v, its
kinetic energy equals (1/2)mv2, plus the amount of kinetic energy
found in the first part of this problem. Show that a hoop rolls down
an inclined plane with half the acceleration that a frictionless sliding
block would have. ?

9 Students are often tempted to think of potential energy and
kinetic energy as if they were always related to each other, like
yin and yang. To show this is incorrect, give examples of physical
situations in which (a) PE is converted to another form of PE, and
(b) KE is converted to another form of KE. . Solution, p. 168

10 Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled,
Joule would stop with his wife at various waterfalls, and measure
the difference in temperature between the top of the waterfall and
the still water at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why should there be any
such effect, and why would Joule care? How would this relate to the
energy concept, of which he was the principal inventor? (b) How
much of a gain in temperature should there be between the top
and bottom of a 50-meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to part b? In reality,
would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.]

√

11 Make an order-of-magnitude estimate of the power repre-
sented by the loss of gravitational energy of the water going over
Niagara Falls. If the hydroelectric plant at the bottom of the falls
could convert 100% of this to electrical power, roughly how many
households could be powered? . Solution, p. 168

12 When you buy a helium-filled balloon, the seller has to inflate
it from a large metal cylinder of the compressed gas. The helium
inside the cylinder has energy, as can be demonstrated for example
by releasing a little of it into the air: you hear a hissing sound,
and that sound energy must have come from somewhere. The total
amount of energy in the cylinder is very large, and if the valve is
inadvertently damaged or broken off, the cylinder can behave like
bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares
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cylinder A with half the normal amount of pure helium, and cylinder
B with the normal amount. Cylinder B has twice as much energy,
and yet the temperatures of both cylinders are the same. Explain, at
the atomic level, what form of energy is involved, and why cylinder
B has twice as much.

13 At a given temperature, the average kinetic energy per
molecule is a fixed value, so for instance in air, the more massive
oxygen molecules are moving more slowly on the average than the
nitrogen molecules. The ratio of the masses of oxygen and nitrogen
molecules is 16 to 14. Now suppose a vessel containing some air is
surrounded by a vacuum, and the vessel has a tiny hole in it, which
allows the air to slowly leak out. The molecules are bouncing around
randomly, so a given molecule will have to “try” many times before
it gets lucky enough to head out through the hole. How many times
more rapidly does the nitrogen escape?

14 Explain in terms of conservation of energy why sweating
cools your body, even though the sweat is at the same temperature
as your body. Describe the forms of energy involved in this energy
transformation. Why don’t you get the same cooling effect if you
wipe the sweat off with a towel? Hint: The sweat is evaporating.

Problems 47



48 Chapter 2 Simplifying the Energy Zoo



Chapter 3

Work: The Transfer of
Mechanical Energy

3.1 Work: The Transfer of Mechanical Energy
The concept of work

The mass contained in a closed system is a conserved quantity,
but if the system is not closed, we also have ways of measuring the
amount of mass that goes in or out. The water company does this
with a meter that records your water use.

Likewise, we often have a system that is not closed, and would
like to know how much energy comes in or out. Energy, however,
is not a physical substance like water, so energy transfer cannot
be measured with the same kind of meter. How can we tell, for
instance, how much useful energy a tractor can “put out” on one
tank of gas?

The law of conservation of energy guarantees that all the chem-
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a / Work is a transfer of en-
ergy.

b / The tractor raises the weight
over the pulley, increasing its
gravitational potential energy.

c / The tractor accelerates
the trailer, increasing its kinetic
energy.

d / The tractor pulls a plow.
Energy is expended in frictional
heating of the plow and the dirt,
and in breaking dirt clods and
lifting dirt up to the sides of the
furrow.

ical energy in the gasoline will reappear in some form, but not nec-
essarily in a form that is useful for doing farm work. Tractors, like
cars, are extremely inefficient, and typically 90% of the energy they
consume is converted directly into heat, which is carried away by
the exhaust and the air flowing over the radiator. We wish to dis-
tinguish the energy that comes out directly as heat from the energy
that serves to accelerate a trailer or to plow a field, so we define
a technical meaning of the ordinary word “work” to express the
distinction:

definition of work
Work is the amount of energy transferred into or out of a
system, not counting energy transferred by heat conduction.

self-check A
Based on this definition, is work a vector, or a scalar? What are its
units? . Answer, p. 166

The conduction of heat is to be distinguished from heating by
friction. When a hot potato heats up your hands by conduction, the
energy transfer occurs without any force, but when friction heats
your car’s brake shoes, there is a force involved. The transfer of en-
ergy with and without a force are measured by completely different
methods, so we wish to include heat transfer by frictional heating
under the definition of work, but not heat transfer by conduction.
The definition of work could thus be restated as the amount of en-
ergy transferred by forces.

Calculating work as force multiplied by distance

The examples in figures b-d show that there are many different
ways in which energy can be transferred. Even so, all these examples
have two things in common:

1. A force is involved.

2. The tractor travels some distance as it does the work.

In b, the increase in the height of the weight, ∆y, is the same as
the distance the tractor travels, which we’ll call d. For simplicity,
we discuss the case where the tractor raises the weight at constant
speed, so that there is no change in the kinetic energy of the weight,
and we assume that there is negligible friction in the pulley, so that
the force the tractor applies to the rope is the same as the rope’s
upward force on the weight. By Newton’s first law, these forces are
also of the same magnitude as the earth’s gravitational force on the
weight. The increase in the weight’s potential energy is given by
F∆y, so the work done by the tractor on the weight equals Fd, the
product of the force and the distance moved:

W = Fd .
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In example c, the tractor’s force on the trailer accelerates it, increas-
ing its kinetic energy. If frictional forces on the trailer are negligible,
then the increase in the trailer’s kinetic energy can be found using
the same algebra that was used on page 39 to find the potential
energy due to gravity. Just as in example b, we have

W = Fd .

Does this equation always give the right answer? Well, sort of.
In example d, there are two quantities of work you might want to
calculate: the work done by the tractor on the plow and the work
done by the plow on the dirt. These two quantities can’t both equal
Fd. Most of the energy transmitted through the cable goes into
frictional heating of the plow and the dirt. The work done by the
plow on the dirt is less than the work done by the tractor on the
plow, by an amount equal to the heat absorbed by the plow. It turns
out that the equation W = Fd gives the work done by the tractor,
not the work done by the plow. How are you supposed to know when
the equation will work and when it won’t? The somewhat complex
answer is postponed until section 3.6. Until then, we will restrict
ourselves to examples in which W = Fd gives the right answer;
essentially the reason the ambiguities come up is that when one
surface is slipping past another, d may be hard to define, because
the two surfaces move different distances.

e / The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.

We have also been using examples in which the force is in the
same direction as the motion, and the force is constant. (If the force
was not constant, we would have to represent it with a function, not
a symbol that stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = Fd ,

if the force is constant and in the same direction as the motion.
Some ambiguities are encountered in cases such as kinetic friction.
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f / Example 1.

Mechanical work done in an earthquake example 1
. In 1998, geologists discovered evidence for a big prehistoric
earthquake in Pasadena, between 10,000 and 15,000 years ago.
They found that the two sides of the fault moved 6.7 m relative
to one another, and estimated that the force between them was
1.3× 1017 N. How much energy was released?

. Multiplying the force by the distance gives 9× 1017 J. For com-
parison, the Northridge earthquake of 1994, which killed 57 peo-
ple and did 40 billion dollars of damage, released 22 times less
energy.

Machines can increase force, but not work.

Figure g shows a pulley arrangement for doubling the force sup-
plied by the tractor (book 1, section 5.6). The tension in the left-
hand rope is equal throughout, assuming negligible friction, so there
are two forces pulling the pulley to the left, each equal to the origi-
nal force exerted by the tractor on the rope. This doubled force is
transmitted through the right-hand rope to the stump.

g / The pulley doubles the force
the tractor can exert on the
stump.

It might seem as though this arrangement would also double the
work done by the tractor, but look again. As the tractor moves
forward 2 meters, 1 meter of rope comes around the pulley, and the
pulley moves 1 m to the left. Although the pulley exerts double the
force on the stump, the pulley and stump only move half as far, so
the work done on the stump is no greater that it would have been
without the pulley.

The same is true for any mechanical arrangement that increases
or decreases force, such as the gears on a ten-speed bike. You can’t
get out more work than you put in, because that would violate
conservation of energy. If you shift gears so that your force on the
pedals is amplified, the result is that you just have to spin the pedals
more times.

No work is done without motion.

It strikes most students as nonsensical when they are told that
if they stand still and hold a heavy bag of cement, they are doing
no work on the bag. Even if it makes sense mathematically that
W = Fd gives zero when d is zero, it seems to violate common
sense. You would certainly become tired! The solution is simple.

52 Chapter 3 Work: The Transfer of Mechanical Energy



h / Whenever energy is trans-
ferred out of the spring, the same
amount has to be transferred into
the ball, and vice versa. As the
spring compresses, the ball is
doing positive work on the spring
(giving up its KE and transferring
energy into the spring as PE),
and as it decompresses the ball
is doing negative work (extracting
energy).

Physicists have taken over the common word “work” and given it a
new technical meaning, which is the transfer of energy. The energy
of the bag of cement is not changing, and that is what the physicist
means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely
within your own muscles, which are converting chemical energy into
heat. Physiologically, a human muscle is not like a tree limb, which
can support a weight indefinitely without the expenditure of energy.
Each muscle cell’s contraction is generated by zillions of little molec-
ular machines, which take turns supporting the tension. When a
particular molecule goes on or off duty, it moves, and since it moves
while exerting a force, it is doing work. There is work, but it is work
done by one molecule in a muscle cell on another.

Positive and negative work

When object A transfers energy to object B, we say that A does
positive work on B. B is said to do negative work on A. In other
words, a machine like a tractor is defined as doing positive work.
This use of the plus and minus signs relates in a logical and consis-
tent way to their use in indicating the directions of force and motion
in one dimension. In figure h, suppose we choose a coordinate sys-
tem with the x axis pointing to the right. Then the force the spring
exerts on the ball is always a positive number. The ball’s motion,
however, changes directions. The symbol d is really just a shorter
way of writing the familiar quantity ∆x, whose positive and negative
signs indicate direction.

While the ball is moving to the left, we use d < 0 to represent
its direction of motion, and the work done by the spring, Fd, comes
out negative. This indicates that the spring is taking kinetic energy
out of the ball, and accepting it in the form of its own potential
energy.

As the ball is reaccelerated to the right, it has d > 0, Fd is
positive, and the spring does positive work on the ball. Potential
energy is transferred out of the spring and deposited in the ball as
kinetic energy.

In summary:

rule for calculating work (including cases of negative
work)
The work done by a force can be calculated as

W = Fd ,

if the force is constant and along the same line as the motion.
The quantity d is to be interpreted as a synonym for ∆x, i.e.,
positive and negative signs are used to indicate the direction
of motion. Some ambiguities are encountered in cases such as
kinetic friction.
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i / Because the force is in
the opposite direction compared
to the motion, the brake shoe
does negative work on the drum,
i.e., accepts energy from it in the
form of heat.

self-check B
In figure h, what about the work done by the ball on the spring?
. Answer, p. 166

There are many examples where the transfer of energy out of an
object cancels out the transfer of energy in. When the tractor pulls
the plow with a rope, the rope does negative work on the tractor
and positive work on the plow. The total work done by the rope is
zero, which makes sense, since it is not changing its energy.

It may seem that when your arms do negative work by lowering
a bag of cement, the cement is not really transferring energy into
your body. If your body was storing potential energy like a com-
pressed spring, you would be able to raise and lower a weight all
day, recycling the same energy. The bag of cement does transfer
energy into your body, but your body accepts it as heat, not as po-
tential energy. The tension in the muscles that control the speed of
the motion also results in the conversion of chemical energy to heat,
for the same physiological reasons discussed previously in the case
where you just hold the bag still.

One of the advantages of electric cars over gasoline-powered cars
is that it is just as easy to put energy back in a battery as it is to
take energy out. When you step on the brakes in a gas car, the brake
shoes do negative work on the rest of the car. The kinetic energy of
the car is transmitted through the brakes and accepted by the brake
shoes in the form of heat. The energy cannot be recovered. Electric
cars, however, are designed to use regenerative braking. The brakes
don’t use friction at all. They are electrical, and when you step on
the brake, the negative work done by the brakes means they accept
the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a
gas car, even if the ultimate source of the electrical energy happens
to be the burning of oil in the electric company’s plant. The electric
car recycles the same energy over and over, and only dissipates heat
due to air friction and rolling resistance, not braking. (The electric
company’s power plant can also be fitted with expensive pollution-
reduction equipment that would be prohibitively expensive or bulky
for a passenger car.)
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k / A force can do positive,
negative, or zero work, depend-
ing on its direction relative to the
direction of the motion.

Discussion Questions

A Besides the presence of a force, what other things differentiate the
processes of frictional heating and heat conduction?

B Criticize the following incorrect statement: “A force doesn’t do any
work unless it’s causing the object to move.”

C To stop your car, you must first have time to react, and then it takes
some time for the car to slow down. Both of these times contribute to the
distance you will travel before you can stop. The figure shows how the
average stopping distance increases with speed. Because the stopping
distance increases more and more rapidly as you go faster, the rule of
one car length per 10 m.p.h. of speed is not conservative enough at high
speeds. In terms of work and kinetic energy, what is the reason for the
more rapid increase at high speeds?

Discussion question C.

3.2 Work in Three Dimensions

A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy.
A force in the same direction as its motion will speed it up, and a
force in the opposite direction will slow it down. As we have already
seen, this is described as doing positive work or doing negative work
on the object. All the examples discussed up until now have been
of motion in one dimension, but in three dimensions the force can
be at any angle θ with respect to the direction of motion.

What if the force is perpendicular to the direction of motion? We
have already seen that a force perpendicular to the motion results
in circular motion at constant speed. The kinetic energy does not
change, and we conclude that no work is done when the force is
perpendicular to the motion.

So far we have been reasoning about the case of a single force
acting on an object, and changing only its kinetic energy. The result
is more generally true, however. For instance, imagine a hockey puck
sliding across the ice. The ice makes an upward normal force, but
does not transfer energy to or from the puck.
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m / Self-check. (Breaking
Trail, by Walter E. Bohl.)

l / Work is only done by the
component of the force parallel to
the motion.

Forces at other angles

Suppose the force is at some other angle with respect to the
motion, say θ = 45 ◦. Such a force could be broken down into two
components, one along the direction of the motion and the other
perpendicular to it. The force vector equals the vector sum of its
two components, and the principle of vector addition of forces thus
tells us that the work done by the total force cannot be any different
than the sum of the works that would be done by the two forces by
themselves. Since the component perpendicular to the motion does
no work, the work done by the force must be

W = F‖|d| , [work done by a constant force]

where the vector d is simply a less cumbersome version of the nota-
tion ∆r. This result can be rewritten via trigonometry as

W = |F||d| cos θ . [work done by a constant force]

Even though this equation has vectors in it, it depends only on
their magnitudes, and the magnitude of a vector is a scalar. Work
is therefore still a scalar quantity, which only makes sense if it is
defined as the transfer of energy. Ten gallons of gasoline have the
ability to do a certain amount of mechanical work, and when you
pull in to a full-service gas station you don’t have to say “Fill ’er up
with 10 gallons of south-going gas.”

Students often wonder why this equation involves a cosine rather
than a sine, or ask if it would ever be a sine. In vector addition, the
treatment of sines and cosines seemed more equal and democratic,
so why is the cosine so special now? The answer is that if we are
going to describe, say, a velocity vector, we must give both the
component parallel to the x axis and the component perpendicular
to the x axis (i.e., the y component). In calculating work, however,
the force component perpendicular to the motion is irrelevant — it
changes the direction of motion without increasing or decreasing the
energy of the object on which it acts. In this context, it is only the
parallel force component that matters, so only the cosine occurs.

self-check C
(a) Work is the transfer of energy. According to this definition, is the
horse in the picture doing work on the pack? (b) If you calculate work
by the method described in this section, is the horse in figure m doing
work on the pack? . Answer, p. 166

Pushing a broom example 2
. If you exert a force of 21 N on a push broom, at an angle 35
degrees below horizontal, and walk for 5.0 m, how much work do
you do? What is the physical significance of this quantity of work?

. Using the second equation above, the work done equals

(21 N)(5.0 m)(cos 35 ◦) = 86 J .
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The form of energy being transferred is heat in the floor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

A violin example 3
As a violinist draws the bow across a string, the bow hairs exert
both a normal force and a kinetic frictional force on the string. The
normal force is perpendicular to the direction of motion, and does
no work. However, the frictional force is in the same direction as
the motion of the bow, so it does work: energy is transferred to
the string, causing it to vibrate.

One way of playing a violin more loudly is to use longer strokes.
Since W = Fd , the greater distance results in more work.

A second way of getting a louder sound is to press the bow more
firmly against the strings. This increases the normal force, and
although the normal force itself does no work, an increase in the
normal force has the side effect of increasing the frictional force,
thereby increasing W = Fd .

The violinist moves the bow back and forth, and sound is pro-
duced on both the “up-bow” (the stroke toward the player’s left)
and the “down-bow” (to the right). One may, for example, play a
series of notes in alternation between up-bows and down-bows.
However, if the notes are of unequal length, the up and down mo-
tions tend to be unequal, and if the player is not careful, she can
run out of bow in the middle of a note! To keep this from hap-
pening, one can move the bow more quickly on the shorter notes,
but the resulting increase in d will make the shorter notes louder
than they should be. A skilled player compensates by reducing
the force.

3.3 Varying Force
Up until now we have done no actual calculations of work in cases
where the force was not constant. The question of how to treat
such cases is mathematically analogous to the issue of how to gener-
alize the equation (distance) = (velocity)(time) to cases where the
velocity was not constant. There, we found that the correct gen-
eralization was to find the area under the graph of velocity versus
time. The equivalent thing can be done with work:

general rule for calculating work
The work done by a force F equals the area under the curve
on a graph of F‖ versus x. (Some ambiguities are encountered
in cases such as kinetic friction.)
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n / The spring does work on
the cart. (Unlike the ball in
section 3.1, the cart is attached
to the spring.)

o / The area of the shaded
triangle gives the work done by
the spring as the cart moves
from the equilibrium position to
position x .

The examples in this section are ones in which the force is vary-
ing, but is always along the same line as the motion, so F is the
same as F‖.

self-check D
In which of the following examples would it be OK to calculate work
using Fd , and in which ones would you have to use the area under the
F − x graph?

(a) A fishing boat cruises with a net dragging behind it.

(b) A magnet leaps onto a refrigerator from a distance.

(c) Earth’s gravity does work on an outward-bound space probe. .

Answer, p. 166
An important and straightforward example is the calculation of

the work done by a spring that obeys Hooke’s law,

F ≈ −k (x− xo) .

The minus sign is because this is the force being exerted by the
spring, not the force that would have to act on the spring to keep
it at this position. That is, if the position of the cart in figure n
is to the right of equilibrium, the spring pulls back to the left, and
vice-versa.

We calculate the work done when the spring is initially at equi-
librium and then decelerates the car as the car moves to the right.
The work done by the spring on the cart equals the minus area of
the shaded triangle, because the triangle hangs below the x axis.
The area of a triangle is half its base multiplied by its height, so

W = −1
2
k (x− xo)2 .

This is the amount of kinetic energy lost by the cart as the spring
decelerates it.

It was straightforward to calculate the work done by the spring in
this case because the graph of F versus x was a straight line, giving
a triangular area. But if the curve had not been so geometrically
simple, it might not have been possible to find a simple equation for
the work done, or an equation might have been derivable only using
calculus. Optional section 3.4 gives an important example of such
an application of calculus.

Energy production in the sun example 4
The sun produces energy through nuclear reactions in which nu-
clei collide and stick together. The figure depicts one such reac-
tion, in which a single proton (hydrogen nucleus) collides with
a carbon nucleus, consisting of six protons and six neutrons.
Neutrons and protons attract other neutrons and protons via the
strong nuclear force, so as the proton approaches the carbon nu-
cleus it is accelerated. In the language of energy, we say that
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p / Example 4.

it loses nuclear potential energy and gains kinetic energy. To-
gether, the seven protons and six neutrons make a nitrogen nu-
cleus. Within the newly put-together nucleus, the neutrons and
protons are continually colliding, and the new proton’s extra ki-
netic energy is rapidly shared out among all the neutrons and
protons. Soon afterward, the nucleus calms down by releasing
some energy in the form of a gamma ray, which helps to heat the
sun.

The graph shows the force between the carbon nucleus and the
proton as the proton is on its way in, with the distance in units of
femtometers (1 fm=10−15 m). Amusingly, the force turns out to be
a few newtons: on the same order of magnitude as the forces we
encounter ordinarily on the human scale. Keep in mind, however,
that a force this big exerted on a single subatomic particle such as
a proton will produce a truly fantastic acceleration (on the order
of 1027 m/s2!).

Why does the force have a peak around x = 3 fm, and become
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smaller once the proton has actually merged with the nucleus?
At x = 3 fm, the proton is at the edge of the crowd of protons and
neutrons. It feels many attractive forces from the left, and none
from the right. The forces add up to a large value. However if
it later finds itself at the center of the nucleus, x = 0, there are
forces pulling it from all directions, and these force vectors cancel
out.

We can now calculate the energy released in this reaction by us-
ing the area under the graph to determine the amount of mechan-
ical work done by the carbon nucleus on the proton. (For simplic-
ity, we assume that the proton came in “aimed” at the center of
the nucleus, and we ignore the fact that it has to shove some neu-
trons and protons out of the way in order to get there.) The area
under the curve is about 17 squares, and the work represented
by each square is

(1 N)(10−15 m) = 10−15 J ,

so the total energy released is about

(10−15 J/square)(17 squares) = 1.7× 10−14 J .

This may not seem like much, but remember that this is only a
reaction between the nuclei of two out of the zillions of atoms in
the sun. For comparison, a typical chemical reaction between
two atoms might transform on the order of 10−19 J of electrical
potential energy into heat — 100,000 times less energy!

As a final note, you may wonder why reactions such as these only
occur in the sun. The reason is that there is a repulsive electrical
force between nuclei. When two nuclei are close together, the
electrical forces are typically about a million times weaker than the
nuclear forces, but the nuclear forces fall off much more quickly
with distance than the electrical forces, so the electrical force is
the dominant one at longer ranges. The sun is a very hot gas, so
the random motion of its atoms is extremely rapid, and a collision
between two atoms is sometimes violent enough to overcome this
initial electrical repulsion.

3.4
∫

Applications of Calculus
The student who has studied integral calculus will recognize that
the graphical rule given in the previous section can be reexpressed
as an integral,

W =
∫ x2

x1

Fdx .

We can then immediately find by the fundamental theorem of cal-
culus that force is the derivative of work with respect to position,

F =
dW
dx

.
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For example, a crane raising a one-ton block on the moon would
be transferring potential energy into the block at only one sixth the
rate that would be required on Earth, and this corresponds to one
sixth the force.

Although the work done by the spring could be calculated with-
out calculus using the area of a triangle, there are many cases where
the methods of calculus are needed in order to find an answer in
closed form. The most important example is the work done by
gravity when the change in height is not small enough to assume a
constant force. Newton’s law of gravity is

F =
GMm

r2
,

which can be integrated to give

W =
∫ r2

r1

GMm

r2
dr

= GMm

(
1
r2
− 1
r1

)
.
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3.5 Work and Potential Energy
The techniques for calculating work can also be applied to the cal-
culation of potential energy. If a certain force depends only on
the distance between the two participating objects, then the energy
released by changing the distance between them is defined as the po-
tential energy, and the amount of potential energy lost equals minus
the work done by the force,

∆PE = −W .

The minus sign occurs because positive work indicates that the po-
tential energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a
reference position, and derive an equation for once and for all that
gives the potential energy relative to this position

PEx = −Wref→x . [potential energy at a point x]

To find the energy transferred into or out of potential energy, one
then subtracts two different values of this equation.

These equations might almost make it look as though work and
energy were the same thing, but they are not. First, potential energy
measures the energy that a system has stored in it, while work
measures how much energy is transferred in or out. Second, the
techniques for calculating work can be used to find the amount of
energy transferred in many situations where there is no potential
energy involved, as when we calculate the amount of kinetic energy
transformed into heat by a car’s brake shoes.

A toy gun example 5
. A toy gun uses a spring with a spring constant of 10 N/m to
shoot a ping-pong ball of mass 5 g. The spring is compressed to
10 cm shorter than its equilibrium length when the gun is loaded.
At what speed is the ball released?

. The equilibrium point is the natural choice for a reference point.
Using the equation found previously for the work, we have

PEx =
1
2

k (x − xo)2 .

The spring loses contact with the ball at the equilibrium point, so
the final potential energy is

PEf = 0 .

The initial potential energy is

PEi =
1
2

(10 N/m)(0.10 m)2 .

= 0.05 J.
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The loss in potential energy of 0.05 J means an increase in kinetic
energy of the same amount. The velocity of the ball is found by
solving the equation K E = (1/2)mv2 for v ,

v =

√
2K E

m

=

√
(2)(0.05 J)
0.005 kg

= 4 m/s .

Gravitational potential energy example 6
. We have already found the equation ∆PE = −F∆y for the gravi-
tational potential energy when the change in height is not enough
to cause a significant change in the gravitational force F . What
if the change in height is enough so that this assumption is no
longer valid? Use the equation W = GMm(1/r2 − 1/r1) derived
in section 3.4 to find the potential energy, using r =∞ as a refer-
ence point.

. The potential energy equals minus the work that would have to
be done to bring the object from r1 =∞ to r = r2, which is

PE = −GMm
r

.

This is simpler than the equation for the work, which is an exam-
ple of why it is advantageous to record an equation for potential
energy relative to some reference point, rather than an equation
for work.

Although the equations derived in the previous two examples
may seem arcane and not particularly useful except for toy design-
ers and rocket scientists, their usefulness is actually greater than
it appears. The equation for the potential energy of a spring can
be adapted to any other case in which an object is compressed,
stretched, twisted, or bent. While you are not likely to use the
equation for gravitational potential energy for anything practical, it
is directly analogous to an equation that is extremely useful in chem-
istry, which is the equation for the potential energy of an electron
at a distance r from the nucleus of its atom. As discussed in more
detail later in the course, the electrical force between the electron
and the nucleus is proportional to 1/r2, just like the gravitational
force between two masses. Since the equation for the force is of the
same form, so is the equation for the potential energy.
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q / 64 The twin Voyager space
probes were perhaps the great-
est scientific successes of the
space program. Over a period
of decades, they flew by all the
planets of the outer solar system,
probably accomplishing more of
scientific interest than the entire
space shuttle program at a tiny
fraction of the cost. Both Voyager
probes completed their final plan-
etary flybys with speeds greater
than the escape velocity at that
distance from the sun, and so
headed on out of the solar system
on hyperbolic orbits, never to re-
turn. Radio contact has been lost,
and they are now likely to travel
interstellar space for billions of
years without colliding with any-
thing or being detected by any in-
telligent species.

Discussion Questions

A What does the graph of PE = (1/2)k (x − xo)2 look like as a function
of x? Discuss the physical significance of its features.

B What does the graph of PE = −GMm/r look like as a function of r?
Discuss the physical significance of its features. How would the equation
and graph change if some other reference point was chosen rather than
r =∞?

C Starting at a distance r from a planet of mass M, how fast must an
object be moving in order to have a hyperbolic orbit, i.e., one that never
comes back to the planet? This velocity is called the escape velocity. In-
terpreting the result, does it matter in what direction the velocity is? Does
it matter what mass the object has? Does the object escape because it is
moving too fast for gravity to act on it?

D Does a spring have an “escape velocity?”

E Calculus-based question: If the form of energy being transferred is
potential energy, then the equations F = dW/dx and W =

∫
Fdx become

F = −dPE/dx and PE = −
∫

Fdx . How would you then apply the fol-
lowing calculus concepts: zero derivative at minima and maxima, and the
second derivative test for concavity up or down.

3.6 ? When Does Work Equal Force Times
Distance?

In the example of the tractor pulling the plow discussed on page
51, the work did not equal Fd. The purpose of this section is to
explain more fully how the quantity Fd can and cannot be used.
To simplify things, I write Fd throughout this section, but more
generally everything said here would be true for the area under the
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graph of F‖ versus d.

The following two theorems allow most of the ambiguity to be
cleared up.

the work-kinetic-energy theorem
The change in kinetic energy associated with the motion of an
object’s center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according
to the equation ∆KEcm = Ftotaldcm.

This can be proved based on Newton’s second law and the equa-
tion KE = (1/2)mv2. Note that despite the traditional name, it
does not necessarily tell the amount of work done, since the forces
acting on the object could be changing other types of energy besides
the KE associated with its center of mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equals Fd,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply
as the second theorem.

A great number of physical situations can be analyzed with these
two theorems, and often it is advantageous to apply both of them
to the same situation.

An ice skater pushing off from a wall example 7
The work-kinetic energy theorem tells us how to calculate the
skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not have any
source of energy.

Absorbing an impact without recoiling? example 8
. Is it possible to absorb an impact without recoiling? For in-
stance, would a brick wall “give” at all if hit by a ping-pong ball?

. There will always be a recoil. In the example proposed, the wall
will surely have some energy transferred to it in the form of heat
and vibration. The second theorem tells us that we can only have
nonzero work if the distance traveled by the point of contact is
nonzero.
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Dragging a refrigerator at constant velocity example 9
Newton’s first law tells us that the total force on the refrigerator
must be zero: your force is canceling the floor’s kinetic frictional
force. The work-kinetic energy theorem is therefore true but use-
less. It tells us that there is zero total force on the refrigerator,
and that the refrigerator’s kinetic energy doesn’t change.

The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance traveled.
Since we know the floor has no source of energy, the only way for
the floor and refrigerator to gain energy is from the work you do.
We can thus calculate the total heat dissipated by friction in the
refrigerator and the floor.

Note that there is no way to find how much of the heat is dissi-
pated in the floor and how much in the refrigerator.

Accelerating a cart example 10
If you push on a cart and accelerate it, there are two forces acting
on the cart: your hand’s force, and the static frictional force of the
ground pushing on the wheels in the opposite direction.

Applying the second theorem to your force tells us how to calcu-
late the work you do.

Applying the second theorem to the floor’s force tells us that the
floor does no work on the cart. There is no motion at the point
of contact, because the atoms in the floor are not moving. (The
atoms in the surface of the wheel are also momentarily at rest
when they touch the floor.) This makes sense, since the floor
does not have any source of energy.

The work-kinetic energy theorem refers to the total force, and be-
cause the floor’s backward force cancels part of your force, the
total force is less than your force. This tells us that only part of
your work goes into the kinetic energy associated with the forward
motion of the cart’s center of mass. The rest goes into rotation of
the wheels.

3.7 ? The Dot Product
Up until now, we have not found any physically useful way to define
the multiplication of two vectors. It would be possible, for instance,
to multiply two vectors component by component to form a third
vector, but there are no physical situations where such a multipli-
cation would be useful.

The equation W = |F||d| cos θ is an example of a sort of mul-
tiplication of vectors that is useful. The result is a scalar, not a
vector, and this is therefore often referred to as the scalar product
of the vectors F and d. There is a standard shorthand notation for
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this operation,

A ·B = |A||B| cos θ , [definition of the notation A ·B;
θ is the angle between vectors A and B]

and because of this notation, a more common term for this operation
is the dot product. In dot product notation, the equation for work
is simply

W = F · d .

The dot product has the following geometric interpretation:

A ·B = |A|(component of B parallel to A)
= |B|(component of A parallel to B)

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

A ·B = B ·A
A · (B + C) = A ·B + A ·C

(cA) ·B = c (A ·B) ,

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily cal-
culate their dot product as follows:

A ·B = AxBx +AyBy +AzBz .

(This can be proved by first analyzing the special case where each
vector has only an x component, and the similar cases for y and z.
We can then use the rule A · (B + C) = A · B + A · C to make a
generalization by writing each vector as the sum of its x, y, and z
components. See homework problem 17.)
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Summary
Selected Vocabulary
work . . . . . . . . the amount of energy transferred into or out

of a system, excluding energy transferred by
heat conduction

Notation
W . . . . . . . . . work

Summary

Work is a measure of the transfer of mechanical energy, i.e., the
transfer of energy by a force rather than by heat conduction. When
the force is constant, work can usually be calculated as

W = F‖|d| , [only if the force is constant]

where d is simply a less cumbersome notation for ∆r, the vector
from the initial position to the final position. Thus,

• A force in the same direction as the motion does positive work,
i.e., transfers energy into the object on which it acts.

• A force in the opposite direction compared to the motion does
negative work, i.e., transfers energy out of the object on which
it acts.

• When there is no motion, no mechanical work is done. The
human body burns calories when it exerts a force without
moving, but this is an internal energy transfer of energy within
the body, and thus does not fall within the scientific definition
of work.

• A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be gen-
eralized as the area under the graph of F‖ versus d.

Machines such as pulleys, levers, and gears may increase or de-
crease a force, but they can never increase or decrease the amount
of work done. That would violate conservation of energy unless the
machine had some source of stored energy or some way to accept
and store up energy.

There are some situations in which the equation W = F‖ |d| is
ambiguous or not true, and these issues are discussed rigorously in
section 3.6. However, problems can usually be avoided by analyzing
the types of energy being transferred before plunging into the math.
In any case there is no substitute for a physical understanding of
the processes involved.

The techniques developed for calculating work can also be ap-
plied to the calculation of potential energy. We fix some position
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as a reference position, and calculate the potential energy for some
other position, x, as

PEx = −Wref→x .

The following two equations for potential energy have broader
significance than might be suspected based on the limited situations
in which they were derived:

PE =
1
2
k (x− xo)2 .

[potential energy of a spring having spring constant
k, when stretched or compressed from the equilibrium
position xo; analogous equations apply for the twisting,
bending, compression, or stretching of any object.]

PE = −GMm

r

[gravitational potential energy of objects of masses M
and m, separated by a distance r; an analogous equation
applies to the electrical potential energy of an electron
in an atom.]
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Two speedboats are identical, but one has more people aboard
than the other. Although the total masses of the two boats are
unequal, suppose that they happen to have the same kinetic energy.
In a boat, as in a car, it’s important to be able to stop in time to
avoid hitting things. (a) If the frictional force from the water is the
same in both cases, how will the boats’ stopping distances compare?
Explain. (b) Compare the times required for the boats to stop.

2 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a fishing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

3 In the earth’s atmosphere, the molecules are constantly moving
around. Because temperature is a measure of kinetic energy per
molecule, the average kinetic energy of each type of molecule is the
same, e.g., the average KE of the O2 molecules is the same as the
average KE of the N2 molecules. (a) If the mass of an O2 molecule
is eight times greater than that of a He atom, what is the ratio of
their average speeds? Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a to explain why any
helium occurring naturally in the atmosphere has long since escaped
into outer space, never to return. (Helium is obtained commercially
by extracting it from rocks.) You may want to do problem 21 first,
for insight.

4 Weiping lifts a rock with a weight of 1.0 N through a height of
1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the floor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the definition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what specific type of energy is involved in each case.

5 In one of his more flamboyant moments, Galileo wrote “Who
does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height
or a cat from a height of eight or ten cubits will suffer no injury?
Equally harmless would be the fall of a grasshopper from a tower or
the fall of an ant from the distance of the moon.” Find the speed
of an ant that falls to earth from the distance of the moon at the
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Problem 8: A cylinder from
the 1965 Rambler’s engine. The
piston is shown in its pushed out
position. The two bulges at the
top are for the valves that let fresh
air-gas mixture in. Based on a
figure from Motor Service’s Au-
tomotive Encyclopedia, Toboldt
and Purvis.

moment when it is about to enter the atmosphere. Assume it is
released from a point that is not actually near the moon, so the
moon’s gravity is negligible.

√

6 [Problem 6 has been deleted.]

7 (a) The crew of an 18th century warship is raising the anchor.
The anchor has a mass of 5000 kg. The water is 30 m deep. The
chain to which the anchor is attached has a mass per unit length of
150 kg/m. Before they start raising the anchor, what is the total
weight of the anchor plus the portion of the chain hanging out of the
ship? (Assume that the buoyancy of the anchor and is negligible.)
(b) After they have raised the anchor by 1 m, what is the weight
they are raising?
(c) Define y = 0 when the anchor is resting on the bottom, and
y = +30 m when it has been raised up to the ship. Draw a graph
of the force the crew has to exert to raise the anchor and chain, as
a function of y. (Assume that they are raising it slowly, so water
resistance is negligible.) It will not be a constant! Now find the
area under the graph, and determine the work done by the crew in
raising the anchor, in joules.
(d) Convert your answer from (c) into units of kcal.

√

8 In the power stroke of a car’s gasoline engine, the fuel-air mix-
ture is ignited by the spark plug, explodes, and pushes the piston
out. The exploding mixture’s force on the piston head is greatest
at the beginning of the explosion, and decreases as the mixture ex-
pands. It can be approximated by F = a/x, where x is the distance
from the cylinder to the piston head, and a is a constant with units
of N.m. (Actually a/x1.4 would be more accurate, but the problem
works out more nicely with a/x!) The piston begins its stroke at
x = x1, and ends at x = x2. The 1965 Rambler had six cylinders,
each with a = 220 N·m, x1 = 1.2 cm, and x2 = 10.2 cm.
(a) Draw a neat, accurate graph of F vs x, on graph paper.
(b) From the area under the curve, derive the amount of work done
in one stroke by one cylinder.

√

(c) Assume the engine is running at 4800 r.p.m., so that during
one minute, each of the six cylinders performs 2400 power strokes.
(Power strokes only happen every other revolution.) Find the en-
gine’s power, in units of horsepower (1 hp=746 W).

√

(d) The compression ratio of an engine is defined as x2/x1. Explain
in words why the car’s power would be exactly the same if x1 and
x2 were, say, halved or tripled, maintaining the same compression
ratio of 8.5. Explain why this would not quite be true with the more
realistic force equation F = a/x1.4.

9 The magnitude of the force between two magnets separated
by a distance r can be approximated as kr−3 for large values of r.
The constant k depends on the strengths of the magnets and the
relative orientations of their north and south poles. Two magnets
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are released on a slippery surface at an initial distance ri, and begin
sliding towards each other. What will be the total kinetic energy
of the two magnets when they reach a final distance rf? (Ignore
friction.)

∫
10 A car starts from rest at t = 0, and starts speeding up with
constant acceleration. (a) Find the car’s kinetic energy in terms of
its mass, m, acceleration, a, and the time, t. (b) Your answer in
the previous part also equals the amount of work, W , done from
t = 0 until time t. Take the derivative of the previous expression
to find the power expended by the car at time t. (c) Suppose two
cars with the same mass both start from rest at the same time, but
one has twice as much acceleration as the other. At any moment,
how many times more power is being dissipated by the more quickly
accelerating car? (The answer is not 2.)

∫
11 A space probe of mass m is dropped into a previously un-
explored spherical cloud of gas and dust, and accelerates toward
the center of the cloud under the influence of the cloud’s gravity.
Measurements of its velocity allow its potential energy, U , to be
determined as a function of the distance r from the cloud’s center.
The mass in the cloud is distributed in a spherically symmetric way,
so its density, ρ(r), depends only on r and not on the angular coor-
dinates. Show that by finding U(r), one can infer ρ(r) as follows:

ρ(r) =
1

4πGmr2
d
dr

(
r2

dU
dr

)
.

∫
?

12 A rail gun is a device like a train on a track, with the train
propelled by a powerful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have been proposed as
an alternative to rockets for sending into outer space any object
that would be strong enough to survive the extreme accelerations.
Suppose that the rail gun capsule is launched straight up, and that
the force of air friction acting on it is given by F = be−cx, where x
is the altitude, b and c are constants, and e is the base of natural
logarithms. The exponential decay occurs because the atmosphere
gets thinner with increasing altitude. (In reality, the force would
probably drop off even faster than an exponential, because the cap-
sule would be slowing down somewhat.) Find the amount of kinetic
energy lost by the capsule due to air friction between when it is
launched and when it is completely beyond the atmosphere. (Grav-
ity is negligible, since the air friction force is much greater than the
gravitational force.)

∫
13 A certain binary star system consists of two stars with masses
m1 and m2, separated by a distance b. A comet, originally nearly at
rest in deep space, drops into the system and at a certain point in
time arrives at the midpoint between the two stars. For that moment
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in time, find its velocity, v, symbolically in terms of b, m1, m2, and
fundamental constants. [Numerical check: For m1 = 1.5 × 1030 kg,
m2 = 3.0×1030 kg, and b = 2.0×1011 m you should find v = 7.7×104

m/s.]

14 An airplane flies in the positive direction along the x axis,
through crosswinds that exert a force F = (a + bx)x̂ + (c + dx)ŷ.
Find the work done by the wind on the plane, and by the plane on
the wind, in traveling from the origin to position x.

∫
15 In 1935, Yukawa proposed an early theory of the force that
held the neutrons and protons together in the nucleus. His equa-
tion for the potential energy of two such particles, at a center-to-
center distance r, was PE(r) = gr−1e−r/a, where g parametrizes the
strength of the interaction, e is the base of natural logarithms, and
a is about 10−15 m. Find the force between two nucleons that would
be consistent with this equation for the potential energy.

∫
16 Prove that the dot product defined in section 3.7 is rotation-
ally invariant in the sense of book 1, section 7.5.

17 Fill in the details of the proof of A·B = AxBx+AyBy +AzBz

on page 67.

18 Does it make sense to say that work is conserved?
. Solution, p. 169

19 (a) Suppose work is done in one-dimensional motion. What
happens to the work if you reverse the direction of the positive
coordinate axis? Base your answer directly on the definition of work.
(b) Now answer the question based on the W = Fd rule.

20 A microwave oven works by twisting molecules one way and
then the other, counterclockwise and then clockwise about their own
centers, millions of times a second. If you put an ice cube or a stick
of butter in a microwave, you’ll observe that the oven doesn’t heat
the solid very quickly, although eventually melting begins in one
small spot. Once a melted spot forms, it grows rapidly, while the
rest of the solid remains solid. In other words, it appears based on
this experiment that a microwave oven heats a liquid much more
rapidly than a solid. Explain why this should happen, based on the
atomic-level description of heat, solids, and liquids. (See, e.g., figure
b on page 37.)

Please don’t repeat the following common mistakes in your expla-
nation:

In a solid, the atoms are packed more tightly and have less
space between them. Not true. Ice floats because it’s less
dense than water.

In a liquid, the atoms are moving much faster. No, the differ-
ence in average speed between ice at −1 ◦C and water at 1 ◦C
is only 0.4%.

Problems 73



21 Starting at a distance r from a planet of mass M , how fast
must an object be moving in order to have a hyperbolic orbit, i.e.,
one that never comes back to the planet? This velocity is called
the escape velocity. Interpreting the result, does it matter in what
direction the velocity is? Does it matter what mass the object has?
Does the object escape because it is moving too fast for gravity to
act on it?

√
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Pool balls exchange momentum.

Chapter 4

Conservation of
Momentum

In many subfields of physics these days, it is possible to read an
entire issue of a journal without ever encountering an equation in-
volving force or a reference to Newton’s laws of motion. In the last
hundred and fifty years, an entirely different framework has been
developed for physics, based on conservation laws.

The new approach is not just preferred because it is in fashion.
It applies inside an atom or near a black hole, where Newton’s laws
do not. Even in everyday situations the new approach can be supe-
rior. We have already seen how perpetual motion machines could be
designed that were too complex to be easily debunked by Newton’s
laws. The beauty of conservation laws is that they tell us something
must remain the same, regardless of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that
further conservation laws are needed in order to replace Newton’s
laws as a complete description of nature? Yes. Conservation of mass
and energy do not relate in any way to the three dimensions of space,
because both are scalars. Conservation of energy, for instance, does
not prevent the planet earth from abruptly making a 90-degree turn
and heading straight into the sun, because kinetic energy does not
depend on direction. In this chapter, we develop a new conserved
quantity, called momentum, which is a vector.
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4.1 Momentum
A conserved quantity of motion

Your first encounter with conservation of momentum may have
come as a small child unjustly confined to a shopping cart. You spot
something interesting to play with, like the display case of imported
wine down at the end of the aisle, and decide to push the cart over
there. But being imprisoned by Dad in the cart was not the only
injustice that day. There was a far greater conspiracy to thwart
your young id, one that originated in the laws of nature. Pushing
forward did nudge the cart forward, but it pushed you backward.
If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked off from the back of the cart.
You could not cause any overall forward motion of the entire system
consisting of the cart with you inside.

In the Newtonian framework, we describe this as arising from
Newton’s third law. The cart made a force on you that was equal
and opposite to your force on it. In the framework of conservation
laws, we cannot attribute your frustration to conservation of energy.
It would have been perfectly possible for you to transform some of
the internal chemical energy stored in your body to kinetic energy
of the cart and your body.

The following characteristics of the situation suggest that there
may be a new conservation law involved:

A closed system is involved. All conservation laws deal with
closed systems. You and the cart are a closed system, since the
well-oiled wheels prevent the floor from making any forward force
on you.

Something remains unchanged. The overall velocity of the
system started out being zero, and you cannot change it. This
vague reference to “overall velocity” can be made more precise:
it is the velocity of the system’s center of mass that cannot be
changed.

Something can be transferred back and forth without
changing the total amount. If we define forward as positive
and backward as negative, then one part of the system can gain
positive motion if another part acquires negative motion. If we
don’t want to worry about positive and negative signs, we can
imagine that the whole cart was initially gliding forward on its
well-oiled wheels. By kicking off from the back of the cart, you
could increase your own velocity, but this inevitably causes the
cart to slow down.
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It thus appears that there is some numerical measure of an object’s
quantity of motion that is conserved when you add up all the objects
within a system.

Momentum

Although velocity has been referred to, it is not the total velocity
of a closed system that remains constant. If it was, then firing a
gun would cause the gun to recoil at the same velocity as the bullet!
The gun does recoil, but at a much lower velocity than the bullet.
Newton’s third law tells us

Fgun on bullet = −Fbullet on gun ,

and assuming a constant force for simplicity, Newton’s second law
allows us to change this to

mbullet
∆vbullet

∆t
= −mgun

∆vgun

∆t
.

Thus if the gun has 100 times more mass than the bullet, it will
recoil at a velocity that is 100 times smaller and in the opposite
direction, represented by the opposite sign. The quantity mv is
therefore apparently a useful measure of motion, and we give it a
name, momentum, and a symbol, p. (As far as I know, the letter
“p” was just chosen at random, since “m” was already being used for
mass.) The situations discussed so far have been one-dimensional,
but in three-dimensional situations it is treated as a vector.

definition of momentum for material objects
The momentum of a material object, i.e., a piece of matter, is defined
as

p = mv ,

the product of the object’s mass and its velocity vector.

The units of momentum are kg·m/s, and there is unfortunately no
abbreviation for this clumsy combination of units.

The reasoning leading up to the definition of momentum was all
based on the search for a conservation law, and the only reason why
we bother to define such a quantity is that experiments show it is
conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,

p1i + p2i + . . . = p1f + p2f + . . . ,

where i labels the initial and f the final momenta. (A closed system
is one on which no external forces act.)
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This chapter first addresses the one-dimensional case, in which the
direction of the momentum can be taken into account by using plus
and minus signs. We then pass to three dimensions, necessitating
the use of vector addition.

A subtle point about conservation laws is that they all refer to
“closed systems,” but “closed” means different things in different
cases. When discussing conservation of mass, “closed” means a sys-
tem that doesn’t have matter moving in or out of it. With energy,
we mean that there is no work or heat transfer occurring across
the boundary of the system. For momentum conservation, “closed”
means there are no external forces reaching into the system.

A cannon example 1
. A cannon of mass 1000 kg fires a 10-kg shell at a velocity of
200 m/s. At what speed does the cannon recoil?

. The law of conservation of momentum tells us that

pcannon,i + pshell ,i = pcannon,f + pshell ,f .

Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

pcannon,i = 0
pshell ,i = 0
pshell ,f = 2000 kg·m/s .

We must have pcannon,f = −2000 kg·m/s, so the recoil velocity of
the cannon is −2 m/s.

Ion drive for propelling spacecraft example 2
. The experimental solar-powered ion drive of the Deep Space 1
space probe expels its xenon gas exhaust at a speed of 30,000
m/s, ten times faster than the exhaust velocity for a typical chemical-
fuel rocket engine. Roughly how many times greater is the maxi-
mum speed this spacecraft can reach, compared with a chemical-
fueled probe with the same mass of fuel (“reaction mass”) avail-
able for pushing out the back as exhaust?

. Momentum equals mass multiplied by velocity. Both spacecraft
are assumed to have the same amount of reaction mass, and the
ion drive’s exhaust has a velocity ten times greater, so the mo-
mentum of its exhaust is ten times greater. Before the engine
starts firing, neither the probe nor the exhaust has any momen-
tum, so the total momentum of the system is zero. By conserva-
tion of momentum, the total momentum must also be zero after
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a / The ion drive engine of the NASA Deep Space 1 probe, shown
under construction (left) and being tested in a vacuum chamber (right)
prior to its October 1998 launch. Intended mainly as a test vehicle for new
technologies, the craft nevertheless carried out a successful scientific
program that included a flyby of a comet.

all the exhaust has been expelled. If we define the positive di-
rection as the direction the spacecraft is going, then the negative
momentum of the exhaust is canceled by the positive momen-
tum of the spacecraft. The ion drive allows a final speed that is
ten times greater. (This simplified analysis ignores the fact that
the reaction mass expelled later in the burn is not moving back-
ward as fast, because of the forward speed of the already-moving
spacecraft.)

Generalization of the momentum concept

As with all the conservation laws, the law of conservation of
momentum has evolved over time. In the 1800’s it was found that
a beam of light striking an object would give it some momentum,
even though light has no mass, and would therefore have no momen-
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b / Steam and other gases
boiling off of the nucleus of Hal-
ley’s comet. This close-up photo
was taken by the European Giotto
space probe, which passed within
596 km of the nucleus on March
13, 1986.

c / Halley’s comet, in a much
less magnified view from a
ground-based telescope.

tum according to the above definition. Rather than discarding the
principle of conservation of momentum, the physicists of the time
decided to see if the definition of momentum could be extended to
include momentum carried by light. The process is analogous to
the process outlined on page 21 for identifying new forms of energy.
The first step was the discovery that light could impart momentum
to matter, and the second step was to show that the momentum
possessed by light could be related in a definite way to observable
properties of the light. They found that conservation of momen-
tum could be successfully generalized by attributing to a beam of
light a momentum vector in the direction of the light’s motion and
having a magnitude proportional to the amount of energy the light
possessed. The momentum of light is negligible under ordinary cir-
cumstances, e.g., a flashlight left on for an hour would only absorb
about 10−5 kg·m/s of momentum as it recoiled.

The tail of a comet example 3
Momentum is not always equal to mv . Like many comets, Halley’s

comet has a very elongated elliptical orbit. About once per cen-
tury, its orbit brings it close to the sun. The comet’s head, or
nucleus, is composed of dirty ice, so the energy deposited by the
intense sunlight boils off steam and other gases, b. The sunlight
does not just carry energy, however — it also carries momen-
tum. Once the gas boils off, the momentum of the sunlight im-
pacting on it pushes it away from the sun, forming a tail, c. By
analogy with matter, for which momentum equals mv , you would
expect that massless light would have zero momentum, but the
equation p = mv is not the correct one for light, and light does
have momentum. (Some comets also have a second tail, which
is propelled by electrical forces rather than by the momentum of
sunlight.)

The reason for bringing this up is not so that you can plug
numbers into a formulas in these exotic situations. The point is
that the conservation laws have proven so sturdy exactly because
they can easily be amended to fit new circumstances. Newton’s
laws are no longer at the center of the stage of physics because they
did not have the same adaptability. More generally, the moral of
this story is the provisional nature of scientific truth.

It should also be noted that conservation of momentum is not
a consequence of Newton’s laws, as is often asserted in textbooks.
Newton’s laws do not apply to light, and therefore could not pos-
sibly be used to prove anything about a concept as general as the
conservation of momentum in its modern form.

Modern Changes in the Momentum Concept
Einstein played a role in two major changes in the momentum concept
in the 1900’s.
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First Einstein showed that the equation p = mv would not work for
a system containing objects moving at very high speeds relative to one
another. He came up with a new equation, to which mv is only the
low-velocity approximation.

The second change, and a far stranger one, was the realization
that at the atomic level, motion is inescapably random. The electron
in a hydrogen atom doesn’t really orbit the nucleus, it forms a vague
cloud around it. It might seem that this would prove nonconservation
of momentum, but in fact the random wanderings of the proton are ex-
actly coordinated with those of the electron so that the total momen-
tum stays exactly constant. In an atom of lead, there are 82 electrons
plus the nucleus, all changing their momenta randomly from moment to
moment, but all coordinating mysteriously with each other to keep the
vector sum constant. In the 1930s, Einstein pointed out that the theo-
ries of the atom then being developed would require this kind of spooky
coordination, and used this as an argument that there was something
physically unreasonable in the new ideas. Experiments, however, have
shown that the spooky effects do happen, and Einstein’s objections are
remembered today only as a historical curiousity.

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the quan-
tity of motion, and a sideshow in the Newton-Leibnitz controversy
over who invented calculus was an argument over whether mv (i.e.,
momentum) or mv2 (i.e., kinetic energy without the 1/2 in front)
was the “true” measure of motion. The modern student can cer-
tainly be excused for wondering why we need both quantities, when
their complementary nature was not evident to the greatest minds
of the 1700’s. The following table highlights their differences.

kinetic energy . . . momentum . . .
is a scalar. is a vector
is not changed by a force perpendic-
ular to the motion, which changes
only the direction of the velocity
vector.

is changed by any force, since a
change in either the magnitude or
the direction of the velocity vector
will result in a change in the mo-
mentum vector.

is always positive, and cannot cancel
out.

cancels with momentum in the op-
posite direction.

can be traded for other forms of en-
ergy that do not involve motion. KE
is not a conserved quantity by itself.

is always conserved in a closed sys-
tem.

is quadrupled if the velocity is dou-
bled.

is doubled if the velocity is doubled.

A spinning top example 4
A spinning top has zero total momentum, because for every mov-
ing point, there is another point on the opposite side that cancels
its momentum. It does, however, have kinetic energy.
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Momentum and kinetic energy in firing a rifle example 5
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the rifle’s
backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive scalars,
however, and do not cancel. The total kinetic energy is allowed to
increase, because kinetic energy is being traded for other forms
of energy. Initially there is chemical energy in the gunpowder.
This chemical energy is converted into heat, sound, and kinetic
energy. The gun’s “backward”’ kinetic energy does not refrigerate
the shooter’s shoulder!

The wobbly earth example 6
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little “or-
bit” about a point below its surface on the line connecting it and
the moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.

The earth and moon get a divorce example 7
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their energies would have
to increase greatly.

Momentum and kinetic energy of a glacier example 8
A cubic-kilometer glacier would have a mass of about 1012 kg. If
it moves at a speed of 10−5 m/s, then its momentum is 107 kg ·
m/s. This is the kind of heroic-scale result we expect, perhaps
the equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained
in a poppy seed or the energy in a drop of gasoline too small
to be seen without a microscope. The surprisingly small kinetic
energy is because kinetic energy is proportional to the square of
the velocity, and the square of a small number is an even smaller
number.
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d / This Hubble Space Tele-
scope photo shows a small
galaxy (yellow blob in the lower
right) that has collided with a
larger galaxy (spiral near the
center), producing a wave of star
formation (blue track) due to the
shock waves passing through
the galaxies’ clouds of gas. This
is considered a collision in the
physics sense, even though it is
statistically certain that no star in
either galaxy ever struck a star in
the other. (This is because the
stars are very small compared to
the distances between them.)

Discussion Questions

A If all the air molecules in the room settled down in a thin film on the
floor, would that violate conservation of momentum as well as conserva-
tion of energy?

B A refrigerator has coils in back that get hot, and heat is molecular
motion. These moving molecules have both energy and momentum. Why
doesn’t the refrigerator need to be tied to the wall to keep it from recoiling
from the momentum it loses out the back?

4.2 Collisions in One Dimension
Physicists employ the term “collision” in a broader sense than

ordinary usage, applying it to any situation where objects interact
for a certain period of time. A bat hitting a baseball, a radioactively
emitted particle damaging DNA, and a gun and a bullet going their
separate ways are all examples of collisions in this sense. Physical
contact is not even required. A comet swinging past the sun on a
hyperbolic orbit is considered to undergo a collision, even though it
never touches the sun. All that matters is that the comet and the
sun exerted gravitational forces on each other.

The reason for broadening the term “collision” in this way is
that all of these situations can be attacked mathematically using
the same conservation laws in similar ways. In the first example,
conservation of momentum is all that is required.

Getting rear-ended example 9
.Ms. Chang is rear-ended at a stop light by Mr. Nelson, and sues
to make him pay her medical bills. He testifies that he was only
going 35 miles per hour when he hit Ms. Chang. She thinks he
was going much faster than that. The cars skidded together after
the impact, and measurements of the length of the skid marks
and the coefficient of friction show that their joint velocity immedi-
ately after the impact was 19 miles per hour. Mr. Nelson’s Nissan
weighs 3100 pounds, and Ms. Chang ’s Cadillac weighs 5200
pounds. Is Mr. Nelson telling the truth?

. Since the cars skidded together, we can write down the equation
for conservation of momentum using only two velocities, v for Mr.
Nelson’s velocity before the crash, and v ′ for their joint velocity
afterward:

mNv = mNv ′ + mCv ′ .

Solving for the unknown, v , we find

v =
(

1 +
mC

mN

)
v ′ .

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we find v = 51 miles per hour. He is lying.
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Gory Details of the Proof in
Example 10

The equation A + B = C + D says
that the change in one ball’s ve-
locity is equal and opposite to the
change in the other’s. We invent a
symbol x = C − A for the change
in ball 1’s velocity. The second
equation can then be rewritten as
A2+B2 = (A+x)2+(B−x)2. Squar-
ing out the quantities in parenthe-
ses and then simplifying, we get
0 = Ax − Bx + x2. The equation
has the trivial solution x = 0, i.e.,
neither ball’s velocity is changed,
but this is physically impossible be-
cause the balls cannot travel through
each other like ghosts. Assuming
x 6= 0, we can divide by x and
solve for x = B − A. This means
that ball 1 has gained an amount
of velocity exactly sufficient to match
ball 2’s initial velocity, and vice-
versa. The balls must have swapped
velocities.

The above example was simple because both cars had the same
velocity afterward. In many one-dimensional collisions, however, the
two objects do not stick. If we wish to predict the result of such a
collision, conservation of momentum does not suffice, because both
velocities after the collision are unknown, so we have one equation
in two unknowns.

Conservation of energy can provide a second equation, but its
application is not as straightforward, because kinetic energy is only
the particular form of energy that has to do with motion. In many
collisions, part of the kinetic energy that was present before the
collision is used to create heat or sound, or to break the objects
or permanently bend them. Cars, in fact, are carefully designed to
crumple in a collision. Crumpling the car uses up energy, and that’s
good because the goal is to get rid of all that kinetic energy in a
relatively safe and controlled way. At the opposite extreme, a su-
perball is “super” because it emerges from a collision with almost all
its original kinetic energy, having only stored it briefly as potential
energy while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic en-
ergy is converted to other forms of energy, can thus be analyzed
more thoroughly, because they have KEf = KEi, as opposed to
the less useful inequality KEf < KEi for a case like a tennis ball
bouncing on grass.

Pool balls colliding head-on example 10
. Two pool balls collide head-on, so that the collision is restricted
to one dimension. Pool balls are constructed so as to lose as little
kinetic energy as possible in a collision, so under the assumption
that no kinetic energy is converted to any other form of energy,
what can we predict about the results of such a collision?

. Pool balls have identical masses, so we use the same symbol
m for both. Conservation of energy and no loss of kinetic energy
give us the two equations

mv1i + mv2i = mv1f + mv2f

1
2

mv2
1i +

1
2

mv2
2i =

1
2

mv2
1f +

1
2

mv2
2f

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
v1i ,... with the symbols A, B, C, and D:

A + B = C + D

A2 + B2 = C2 + D2 .

A little experimentation with numbers shows that given values of A
and B, it is impossible to find C and D that satisfy these equations
unless C and D equal A and B, or C and D are the same as A
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and B but swapped around. A formal proof of this fact is given
in the sidebar. In the special case where ball 2 is initially at rest,
this tells us that ball 1 is stopped dead by the collision, and ball
2 heads off at the velocity originally possessed by ball 1. This
behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are
the least interesting part of the problem, and considerable physical
insight can be gained simply by counting the number of unknowns
and comparing to the number of equations. Suppose a beginner at
pool notices a case where her cue ball hits an initially stationary
ball and stops dead. “Wow, what a good trick,” she thinks. “I
bet I could never do that again in a million years.” But she tries
again, and finds that she can’t help doing it even if she doesn’t
want to. Luckily she has just learned about collisions in her physics
course. Once she has written down the equations for conservation
of energy and no loss of kinetic energy, she really doesn’t have to
complete the algebra. She knows that she has two equations in
two unknowns, so there must be a well-defined solution. Once she
has seen the result of one such collision, she knows that the same
thing must happen every time. The same thing would happen with
colliding marbles or croquet balls. It doesn’t matter if the masses or
velocities are different, because that just multiplies both equations
by some constant factor.

The discovery of the neutron

This was the type of reasoning employed by James Chadwick in
his 1932 discovery of the neutron. At the time, the atom was imag-
ined to be made out of two types of fundamental particles, protons
and electrons. The protons were far more massive, and clustered
together in the atom’s core, or nucleus. Attractive electrical forces
caused the electrons to orbit the nucleus in circles, in much the
same way that gravitational forces kept the planets from cruising
out of the solar system. Experiments showed that the helium nu-
cleus, for instance, exerted exactly twice as much electrical force on
an electron as a nucleus of hydrogen, the smallest atom, and this was
explained by saying that helium had two protons to hydrogen’s one.
The trouble was that according to this model, helium would have
two electrons and two protons, giving it precisely twice the mass of
a hydrogen atom with one of each. In fact, helium has about four
times the mass of hydrogen.

Chadwick suspected that the helium nucleus possessed two addi-
tional particles of a new type, which did not participate in electrical
forces at all, i.e., were electrically neutral. If these particles had very
nearly the same mass as protons, then the four-to-one mass ratio of
helium and hydrogen could be explained. In 1930, a new type of
radiation was discovered that seemed to fit this description. It was
electrically neutral, and seemed to be coming from the nuclei of light
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elements that had been exposed to other types of radiation. At this
time, however, reports of new types of particles were a dime a dozen,
and most of them turned out to be either clusters made of previ-
ously known particles or else previously known particles with higher
energies. Many physicists believed that the “new” particle that had
attracted Chadwick’s interest was really a previously known particle
called a gamma ray, which was electrically neutral. Since gamma
rays have no mass, Chadwick decided to try to determine the new
particle’s mass and see if it was nonzero and approximately equal
to the mass of a proton.

Unfortunately a subatomic particle is not something you can
just put on a scale and weigh. Chadwick came up with an ingenious
solution. The masses of the nuclei of the various chemical elements
were already known, and techniques had already been developed for
measuring the speed of a rapidly moving nucleus. He therefore set
out to bombard samples of selected elements with the mysterious
new particles. When a direct, head-on collision occurred between
a mystery particle and the nucleus of one of the target atoms, the
nucleus would be knocked out of the atom, and he would measure
its velocity.

Suppose, for instance, that we bombard a sample of hydrogen
atoms with the mystery particles. Since the participants in the
collision are fundamental particles, there is no way for kinetic energy
to be converted into heat or any other form of energy, and Chadwick
thus had two equations in three unknowns:

equation #1: conservation of momentum

equation #2: no loss of kinetic energy

unknown #1: mass of the mystery particle

unknown #2: initial velocity of the mystery particle

unknown #3: final velocity of the mystery particle

The number of unknowns is greater than the number of equa-
tions, so there is no unique solution. But by creating collisions with
nuclei of another element, nitrogen, he gained two more equations
at the expense of only one more unknown:

equation #3: conservation of momentum in the new collision

equation #4: no loss of kinetic energy in the new collision

unknown #4: final velocity of the mystery particle in the new
collision

He was thus able to solve for all the unknowns, including the
mass of the mystery particle, which was indeed within 1% of the
mass of a proton. He named the new particle the neutron, since it
is electrically neutral.
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e / Chadwick’s subatomic pool table. A disk of the naturally occur-
ring metal polonium provides a source of radiation capable of kicking
neutrons out of the beryllium nuclei. The type of radiation emitted by
the polonium is easily absorbed by a few mm of air, so the air has to be
pumped out of the left-hand chamber. The neutrons, Chadwick’s mystery
particles, penetrate matter far more readily, and fly out through the wall
and into the chamber on the right, which is filled with nitrogen or hydrogen
gas. When a neutron collides with a nitrogen or hydrogen nucleus, it
kicks it out of its atom at high speed, and this recoiling nucleus then rips
apart thousands of other atoms of the gas. The result is an electrical
pulse that can be detected in the wire on the right. Physicists had already
calibrated this type of apparatus so that they could translate the strength
of the electrical pulse into the velocity of the recoiling nucleus. The
whole apparatus shown in the figure would fit in the palm of your hand, in
dramatic contrast to today’s giant particle accelerators.

Discussion Question

A Good pool players learn to make the cue ball spin, which can cause
it not to stop dead in a head-on collision with a stationary ball. If this does
not violate the laws of physics, what hidden assumption was there in the
example above?
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g / Two hockey pucks collide.
Their mutual center of mass
traces the straight path shown by
the dashed line.

4.3 ? Relationship of Momentum to the Center
of Mass

f / In this multiple-flash photo-
graph, we see the wrench from
above as it flies through the air,
rotating as it goes. Its center
of mass, marked with the black
cross, travels along a straight line,
unlike the other points on the
wrench, which execute loops.

We have already discussed the idea of the center of mass in the
first book of this series, but using the concept of momentum we can
now find a mathematical method for defining the center of mass,
explain why the motion of an object’s center of mass usually exhibits
simpler motion than any other point, and gain a very simple and
powerful way of understanding collisions.

The first step is to realize that the center of mass concept can
be applied to systems containing more than one object. Even some-
thing like a wrench, which we think of as one object, is really made
of many atoms. The center of mass is particularly easy to visualize
in the case shown on the left, where two identical hockey pucks col-
lide. It is clear on grounds of symmetry that their center of mass
must be at the midpoint between them. After all, we previously de-
fined the center of mass as the balance point, and if the two hockey
pucks were joined with a very lightweight rod whose own mass was
negligible, they would obviously balance at the midpoint. It doesn’t
matter that the hockey pucks are two separate objects. It is still
true that the motion of their center of mass is exceptionally simple,
just like that of the wrench’s center of mass.

The x coordinate of the hockey pucks’ center of mass is thus
given by xcm = (x1 + x2)/2, i.e., the arithmetic average of their
x coordinates. Why is its motion so simple? It has to do with
conservation of momentum. Since the hockey pucks are not being
acted on by any net external force, they constitute a closed system,
and their total momentum is conserved. Their total momentum is

mv1 +mv2 = m(v1 + v2)

= m

(
∆x1

∆t
+

∆x2

∆t

)
=

m

∆t
∆ (x1 + x2)

= m
2∆xcm

∆t
= mtotalvcm

In other words, the total momentum of the system is the same as
if all its mass was concentrated at the center of mass point. Since
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the total momentum is conserved, the x component of the center of
mass’s velocity vector cannot change. The same is also true for the
other components, so the center of mass must move along a straight
line at constant speed.

The above relationship between the total momentum and the
motion of the center of mass applies to any system, even if it is not
closed.

total momentum related to center of mass motion
The total momentum of any system is related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm .

What about a system containing objects with unequal masses,
or containing more than two objects? The reasoning above can be
generalized to a weighted average

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.

Momentum in different frames of reference

Absolute motion is supposed to be undetectable, i.e., the laws
of physics are supposed to be equally valid in all inertial frames
of reference. If we first calculate some momenta in one frame of
reference and find that momentum is conserved, and then rework
the whole problem in some other frame of reference that is moving
with respect to the first, the numerical values of the momenta will
all be different. Even so, momentum will still be conserved. All that
matters is that we work a single problem in one consistent frame of
reference.

One way of proving this is to apply the equation ptotal =
mtotalvcm. If the velocity of frame B relative to frame A is vBA,
then the only effect of changing frames of reference is to change
vcm from its original value to vcm + vBA. This adds a constant
onto the momentum vector, which has no effect on conservation of
momentum.
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i / The slingshot effect viewed
in the sun’s frame of reference.
Jupiter is moving to the left, and
the collision is head-on.

j / The slingshot viewed in
the frame of the center of mass of
the Jupiter-spacecraft system.

h / Moving your head so that
you are always looking down
from right above the center of
mass, you observe the collision
of the two hockey pucks in the
center of mass frame.

The center of mass frame of reference
A particularly useful frame of reference in many cases is the

frame that moves along with the center of mass, called the center
of mass (c.m.) frame. In this frame, the total momentum is zero.
The following examples show how the center of mass frame can be
a powerful tool for simplifying our understanding of collisions.

A collision of pool balls viewed in the c.m. frame example 11
If you move your head so that your eye is always above the point
halfway in between the two pool balls, you are viewing things in
the center of mass frame. In this frame, the balls come toward the
center of mass at equal speeds. By symmetry, they must there-
fore recoil at equal speeds along the lines on which they entered.
Since the balls have essentially swapped paths in the center of
mass frame, the same must also be true in any other frame. This
is the same result that required laborious algebra to prove previ-
ously without the concept of the center of mass frame.

The slingshot effect example 12
It is a counterintuitive fact that a spacecraft can pick up speed
by swinging around a planet, if arrives in the opposite direction
compared to the planet’s motion. Although there is no physical
contact, we treat the encounter as a one-dimensional collision,
and analyze it in the center of mass frame. Figure i shows such
a “collision,” with a space probe whipping around Jupiter. In the
sun’s frame of reference, Jupiter is moving.
What about the center of mass frame? Since Jupiter is so much
more massive than the spacecraft, the center of mass is essen-
tially fixed at Jupiter’s center, and Jupiter has zero velocity in the
center of mass frame, as shown in figure j. The c.m. frame is
moving to the left compared to the sun-fixed frame used in i, so
the spacecraft’s initial velocity is greater in this frame.

Things are simpler in the center of mass frame, because it is more
symmetric. In the complicated sun-fixed frame, the incoming leg
of the encounter is rapid, because the two bodies are rushing to-
ward each other, while their separation on the outbound leg is
more gradual, because Jupiter is trying to catch up. In the c.m.
frame, Jupiter is sitting still, and there is perfect symmetry be-
tween the incoming and outgoing legs, so by symmetry we have
v1f = −v1i . Going back to the sun-fixed frame, the spacecraft’s
final velocity is increased by the frames’ motion relative to each
other. In the sun-fixed frame, the spacecraft’s velocity has in-
creased greatly.

The result can also be understood in terms of work and energy.
In Jupiter’s frame, Jupiter is not doing any work on the spacecraft
as it rounds the back of the planet, because the motion is per-
pendicular to the force. But in the sun’s frame, the spacecraft’s
velocity vector at the same moment has a large component to the
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k / Power and force are the
rates at which energy and
momentum are transferred.

left, so Jupiter is doing work on it.

Discussion Questions

A Make up a numerical example of two unequal masses moving in one
dimension at constant velocity, and verify the equation ptotal = mtotalvcm
over a time interval of one second.

B A more massive tennis racquet or baseball bat makes the ball fly
off faster. Explain why this is true, using the center of mass frame. For
simplicity, assume that the racquet or bat is simply sitting still before the
collision, and that the hitter’s hands do not make any force large enough
to have a significant effect over the short duration of the impact.

4.4 Momentum Transfer
The rate of change of momentum

As with conservation of energy, we need a way to measure and
calculate the transfer of momentum into or out of a system when the
system is not closed. In the case of energy, the answer was rather
complicated, and entirely different techniques had to be used for
measuring the transfer of mechanical energy (work) and the transfer
of heat by conduction. For momentum, the situation is far simpler.

In the simplest case, the system consists of a single object acted
on by a constant external force. Since it is only the object’s velocity
that can change, not its mass, the momentum transferred is

∆p = m∆v ,

which with the help of a = F/m and the constant-acceleration equa-
tion a = ∆v/∆t becomes

∆p = ma∆t
= F∆t .

Thus the rate of transfer of momentum, i.e., the number of kg·m/s
absorbed per second, is simply the external force,

F =
∆p
∆t

.

[relationship between the force on an object and the
rate of change of its momentum; valid only if the force
is constant]

This is just a restatement of Newton’s second law, and in fact New-
ton originally stated it this way. As shown in figure k, the rela-
tionship between force and momentum is directly analogous to that
between power and energy.

The situation is not materially altered for a system composed
of many objects. There may be forces between the objects, but the
internal forces cannot change the system’s momentum. (If they did,
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then removing the external forces would result in a closed system
that could change its own momentum, like the mythical man who
could pull himself up by his own bootstraps. That would violate
conservation of momentum.) The equation above becomes

Ftotal =
∆ptotal

∆t
.

[relationship between the total external force on a sys-
tem and the rate of change of its total momentum; valid
only if the force is constant]

Walking into a lamppost example 13
. Starting from rest, you begin walking, bringing your momentum
up to 100 kg·m/s. You walk straight into a lamppost. Why is the
momentum change of −100 kg ·m/s caused by the lamppost so
much more painful than the change of +100 kg ·m/s when you
started walking?

. The situation is one-dimensional, so we can dispense with the
vector notation. It probably takes you about 1 s to speed up ini-
tially, so the ground’s force on you is F = ∆p/∆t ≈ 100 N. Your
impact with the lamppost, however, is over in the blink of an eye,
say 1/10 s or less. Dividing by this much smaller ∆t gives a much
larger force, perhaps thousands of newtons. (The negative sign
simply indicates that the force is in the opposite direction.)

This is also the principle of airbags in cars. The time required for
the airbag to decelerate your head is fairly long, the time required
for your face to travel 20 or 30 cm. Without an airbag, your face
would hit the dashboard, and the time interval would be the much
shorter time taken by your skull to move a couple of centimeters
while your face compressed. Note that either way, the same amount
of mechanical work has to be done on your head: enough to eliminate
all its kinetic energy.

Ion drive for spacecraft example 14
. The ion drive of the Deep Space 1 spacecraft, pictured on page
79 and discussed in example 2, produces a thrust of 90 mN
(millinewtons). It carries about 80 kg of reaction mass, which it
ejects at a speed of 30,000 m/s. For how long can the engine
continue supplying this amount of thrust before running out of re-
action mass to shove out the back?

. Solving the equation F = ∆p/∆t for the unknown ∆t , and treat-
ing force and momentum as scalars since the problem is one-
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m / The F − t graph for a
tennis racquet hitting a ball might
look like this. The amount of
momentum transferred equals
the area under the curve.

l / Example 15.

dimensional, we find

∆t =
∆p
F

=
mexhaust∆vexhaust

F

=
(80 kg)(30, 000 m/s)

0.090 N
= 2.7× 107 s
= 300 days

A toppling box example 15
If you place a box on a frictionless surface, it will fall over with a
very complicated motion that is hard to predict in detail. We know,
however, that its center of mass moves in the same direction as
its momentum vector points. There are two forces, a normal force
and a gravitational force, both of which are vertical. (The grav-
itational force is actually many gravitational forces acting on all
the atoms in the box.) The total force must be vertical, so the
momentum vector must be purely vertical too, and the center of
mass travels vertically. This is true even if the box bounces and
tumbles. [Based on an example by Kleppner and Kolenkow.]

The area under the force-time graph

Few real collisions involve a constant force. For example, when
a tennis ball hits a racquet, the strings stretch and the ball flattens
dramatically. They are both acting like springs that obey Hooke’s
law, which says that the force is proportional to the amount of
stretching or flattening. The force is therefore small at first, ramps
up to a maximum when the ball is about to reverse directions, and
ramps back down again as the ball is on its way back out. The
equation F = ∆p/∆t, derived under the assumption of constant
acceleration, does not apply here, and the force does not even have
a single well-defined numerical value that could be plugged in to the
equation.

As with similar-looking equations such as v = ∆p/∆t, the equa-
tion F = ∆p/∆t is correctly generalized by saying that the force is
the slope of the p− t graph.

Conversely, if we wish to find ∆p from a graph such as the one in
figure m, one approach would be to divide the force by the mass of
the ball, rescaling the F axis to create a graph of acceleration versus
time. The area under the acceleration-versus-time graph gives the
change in velocity, which can then be multiplied by the mass to
find the change in momentum. An unnecessary complication was
introduced, however, because we began by dividing by the mass
and ended by multiplying by it. It would have made just as much
sense to find the area under the original F − t graph, which would
have given us the momentum change directly.
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n / Example 16.

Discussion Question

A Many collisions, like the collision of a bat with a baseball, appear to
be instantaneous. Most people also would not imagine the bat and ball as
bending or being compressed during the collision. Consider the following
possibilities:

1. The collision is instantaneous.

2. The collision takes a finite amount of time, during which the ball and
bat retain their shapes and remain in contact.

3. The collision takes a finite amount of time, during which the ball and
bat are bending or being compressed.

How can two of these be ruled out based on energy or momentum con-
siderations?

4.5 Momentum in Three Dimensions
In this section we discuss how the concepts applied previously to
one-dimensional situations can be used as well in three dimensions.
Often vector addition is all that is needed to solve a problem:

An explosion example 16

. Astronomers observe the planet Mars as the Martians fight a
nuclear war. The Martian bombs are so powerful that they rip the
planet into three separate pieces of liquified rock, all having the
same mass. If one fragment flies off with velocity components

v1x = 0

v1y = 1.0× 104 km/hr ,

and the second with

v2x = 1.0× 104 km/hr
v2y = 0 ,

(all in the center of mass frame) what is the magnitude of the third
one’s velocity?

. In the center of mass frame, the planet initially had zero momen-
tum. After the explosion, the vector sum of the momenta must still
be zero. Vector addition can be done by adding components, so

mv1x + mv2x + mv3x = 0 , and
mv1y + mv2y + mv3y = 0 ,

where we have used the same symbol m for all the terms, be-
cause the fragments all have the same mass. The masses can
be eliminated by dividing each equation by m, and we find

v3x = −1.0× 104 km/hr

v3y = −1.0× 104 km/hr
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o / Example 17.

which gives a magnitude of

|v3| =
√

v2
3x + v2

3y

= 1.4× 104 km/hr

The center of mass

In three dimensions, we have the vector equations

Ftotal =
∆ptotal

∆t

and

ptotal = mtotalvcm .

The following is an example of their use.

The bola example 17
The bola, similar to the North American lasso, is used by South
American gauchos to catch small animals by tangling up their
legs in the three leather thongs. The motion of the whirling bola
through the air is extremely complicated, and would be a chal-
lenge to analyze mathematically. The motion of its center of
mass, however, is much simpler. The only forces on it are gravi-
tational, so

Ftotal = mtotalg .

Using the equation Ftotal = ∆ptotal/∆t , we find

∆ptotal/∆t = mtotalg ,

and since the mass is constant, the equation ptotal = mtotalvcm
allows us to change this to

mtotal∆vcm/∆t = mtotalg .

The mass cancels, and ∆vcm/∆t is simply the acceleration of the
center of mass, so

acm = g .

In other words, the motion of the system is the same as if all its
mass was concentrated at and moving with the center of mass.
The bola has a constant downward acceleration equal to g, and
flies along the same parabola as any other projectile thrown with
the same initial center of mass velocity. Throwing a bola with the
correct rotation is presumably a difficult skill, but making it hit its
target is no harder than it is with a ball or a single rock.

[Based on an example by Kleppner & Kolenkow.]
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Counting equations and unknowns

Counting equations and unknowns is just as useful as in one
dimension, but every object’s momentum vector has three compo-
nents, so an unknown momentum vector counts as three unknowns.
Conservation of momentum is a single vector equation, but it says
that all three components of the total momentum vector stay con-
stant, so we count it as three equations. Of course if the motion
happens to be confined to two dimensions, then we need only count
vectors as having two components.

A two-car crash with sticking example 18
Suppose two cars collide, stick together, and skid off together. If
we know the cars’ initial momentum vectors, we can count equa-
tions and unknowns as follows:

unknown #1: x component of cars’ final, total momentum

unknown #2: y component of cars’ final, total momentum

equation #1: conservation of the total px

equation #2: conservation of the total py

Since the number of equations equals the number of unknowns,
there must be one unique solution for their total momentum vector
after the crash. In other words, the speed and direction at which
their common center of mass moves off together is unaffected by
factors such as whether the cars collide center-to-center or catch
each other a little off-center.

Shooting pool example 19
Two pool balls collide, and as before we assume there is no de-
crease in the total kinetic energy, i.e., no energy converted from
KE into other forms. As in the previous example, we assume we
are given the initial velocities and want to find the final velocities.
The equations and unknowns are:

unknown #1: x component of ball #1’s final momentum

unknown #2: y component of ball #1’s final momentum

unknown #3: x component of ball #2’s final momentum

unknown #4: y component of ball #2’s final momentum

equation #1: conservation of the total px

equation #2: conservation of the total py

equation #3: no decrease in total KE

Note that we do not count the balls’ final kinetic energies as un-
knowns, because knowing the momentum vector, one can always
find the velocity and thus the kinetic energy. The number of equa-
tions is less than the number of unknowns, so no unique result is
guaranteed. This is what makes pool an interesting game. By
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p / Example 20.

aiming the cue ball to one side of the target ball you can have
some control over the balls’ speeds and directions of motion after
the collision.

It is not possible, however, to choose any combination of final
speeds and directions. For instance, a certain shot may give the
correct direction of motion for the target ball, making it go into a
pocket, but may also have the undesired side-effect of making the
cue ball go in a pocket.

Calculations with the momentum vector

The following example illustrates how a force is required to
change the direction of the momentum vector, just as one would
be required to change its magnitude.

A turbine example 20
. In a hydroelectric plant, water flowing over a dam drives a tur-
bine, which runs a generator to make electric power. The figure
shows a simplified physical model of the water hitting the turbine,
in which it is assumed that the stream of water comes in at a
45 ◦angle with respect to the turbine blade, and bounces off at a
90 ◦angle at nearly the same speed. The water flows at a rate R,
in units of kg/s, and the speed of the water is v . What are the
magnitude and direction of the water’s force on the turbine?

. In a time interval ∆t, the mass of water that strikes the blade is
R∆t, and the magnitude of its initial momentum is mv = vR∆t .
The water’s final momentum vector is of the same magnitude, but
in the perpendicular direction. By Newton’s third law, the water’s
force on the blade is equal and opposite to the blade’s force on
the water. Since the force is constant, we can use the equation

Fblade on water =
∆pwater

∆t
.

Choosing the x axis to be to the right and the y axis to be up, this
can be broken down into components as

Fblade on water,x =
∆pwater,x

∆t

=
−vR∆t − 0

∆t
= −vR

and

Fblade on water,y =
∆pwater,y

∆t

=
0− (−vR∆t)

∆t
= vR .
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The water’s force on the blade thus has components

Fwater on blade,x = vR
Fwater on blade,y = −vR .

In situations like this, it is always a good idea to check that the
result makes sense physically. The x component of the water’s
force on the blade is positive, which is correct since we know the
blade will be pushed to the right. The y component is negative,
which also makes sense because the water must push the blade
down. The magnitude of the water’s force on the blade is

|Fwater on blade| =
√

2vR

and its direction is at a 45-degree angle down and to the right.

Discussion Questions

A The figures show a jet of water striking two different objects. How
does the total downward force compare in the two cases? How could this
fact be used to create a better waterwheel? (Such a waterwheel is known
as a Pelton wheel.)

Discussion question A.

4.6
∫

Applications of Calculus
By now you will have learned to recognized the circumlocutions I
use in the sections without calculus in order to introduce calculus-
like concepts without using the notation, terminology, or techniques
of calculus. It will therefore come as no surprise to you that the rate
of change of momentum can be represented with a derivative,

Ftotal =
dptotal

dt
.

And of course the business about the area under the F − t curve is
really an integral, ∆ptotal =

∫
Ftotaldt, which can be made into an

integral of a vector in the more general three-dimensional case:

∆ptotal =
∫

Ftotaldt .

In the case of a material object that is neither losing nor picking up
mass, these are just trivially rearranged versions of familiar equa-
tions, e.g., F = mdv/dt rewritten as F = d(mv)/dt. The following
is a less trivial example, where F = ma alone would not have been
very easy to work with.
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Rain falling into a moving cart example 21
. If 1 kg/s of rain falls vertically into a 10-kg cart that is rolling
without friction at an initial speed of 1.0 m/s, what is the effect on
the speed of the cart when the rain first starts falling?

. The rain and the cart make horizontal forces on each other, but
there is no external horizontal force on the rain-plus-cart system,
so the horizontal motion obeys

F =
d(mv )

dt
= 0

We use the product rule to find

0 =
dm
dt

v + m
dv
dt

.

We are trying to find how v changes, so we solve for dv/dt ,

dv
dt

= − v
m

dm
dt

= −
(

1 m/s
10 kg

)
(1 kg/s)

= −0.1 m/s2 .

(This is only at the moment when the rain starts to fall.)

Finally we note that there are cases where F = ma is not just
less convenient than F = dp/dt but in fact F = ma is wrong and
F = dp/dt is right. A good example is the formation of a comet’s
tail by sunlight. We cannot use F = ma to describe this process,
since we are dealing with a collision of light with matter, whereas
Newton’s laws only apply to matter. The equation F = dp/dt, on
the other hand, allows us to find the force experienced by an atom of
gas in the comet’s tail if we know the rate at which the momentum
vectors of light rays are being turned around by reflection from the
atom.

Section 4.6
∫
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Summary
Selected Vocabulary
momentum . . . a measure of motion, equal to mv for material

objects
collision . . . . . an interaction between moving objects that

lasts for a certain time
center of mass . . the balance point or average position of the

mass in a system

Notation
p . . . . . . . . . . the momentum vector
cm . . . . . . . . . center of mass, as in xcm, acm, etc.

Other Terminology and Notation
impulse, I, J . . the amount of momentum transferred, ∆p
elastic collision . one in which no KE is converted into other

forms of energy
inelastic collision one in which some KE is converted to other

forms of energy

Summary

If two objects interact via a force, Newton’s third law guaran-
tees that any change in one’s velocity vector will be accompanied
by a change in the other’s which is in the opposite direction. Intu-
itively, this means that if the two objects are not acted on by any
external force, they cannot cooperate to change their overall state of
motion. This can be made quantitative by saying that the quantity
m1v1 + m2v2 must remain constant as long as the only forces are
the internal ones between the two objects. This is a conservation
law, called the conservation of momentum, and like the conserva-
tion of energy, it has evolved over time to include more and more
phenomena unknown at the time the concept was invented. The
momentum of a material object is

p = mv ,

but this is more like a standard for comparison of momenta rather
than a definition. For instance, light has momentum, but has no
mass, and the above equation is not the right equation for light. The
law of conservation of momentum says that the total momentum of
any closed system, i.e., the vector sum of the momentum vectors of
all the things in the system, is a constant.

An important application of the momentum concept is to colli-
sions, i.e., interactions between moving objects that last for a certain
amount of time while the objects are in contact or near each other.
Conservation of momentum tells us that certain outcomes of a col-
lision are impossible, and in some cases may even be sufficient to
predict the motion after the collision. In other cases, conservation
of momentum does not provide enough equations to find all the un-
knowns. In some collisions, such as the collision of a superball with
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the floor, very little kinetic energy is converted into other forms of
energy, and this provides one more equation, which may suffice to
predict the outcome.

The total momentum of a system can be related to its total mass
and the velocity of its center of mass by the equation

ptotal = mtotalvcm .

The center of mass, introduced on an intuitive basis in book 1 as
the “balance point” of an object, can be generalized to any system
containing any number of objects, and is defined mathematically
as the weighted average of the positions of all the parts of all the
objects,

xcm =
m1x1 +m2x2 + . . .

m1 +m2 + . . .
,

with similar equations for the y and z coordinates.

The frame of reference moving with the center of mass of a closed
system is always a valid inertial frame, and many problems can be
greatly simplified by working them in the inertial frame. For exam-
ple, any collision between two objects appears in the c.m. frame as
a head-on one-dimensional collision.

When a system is not closed, the rate at which momentum is
transferred in or out is simply the total force being exerted externally
on the system. If the force is constant,

Ftotal =
∆ptotal

∆t
.

When the force is not constant, the force equals the slope of the
tangent line on a graph of p versus t, and the change in momentum
equals the area under the F − t graph.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Derive a formula expressing the kinetic energy of an object in
terms of its momentum and mass.

√

2 Two people in a rowboat wish to move around without causing
the boat to move. What should be true about their total momen-
tum? Explain.

3 A learjet traveling due east at 300 mi/hr collides with a
jumbo jet which was heading southwest at 150 mi/hr. The jumbo
jet’s mass is 5.0 times greater than that of the learjet. When they
collide, the learjet sticks into the fuselage of the jumbo jet, and they
fall to earth together. Their engines stop functioning immediately
after the collision. On a map, what will be the direction from the
location of the collision to the place where the wreckage hits the
ground? (Give an angle.)

√

4 A bullet leaves the barrel of a gun with a kinetic energy of 90
J. The gun barrel is 50 cm long. The gun has a mass of 4 kg, the
bullet 10 g.
(a) Find the bullet’s final velocity.

√

(b) Find the bullet’s final momentum.
√

(c) Find the momentum of the recoiling gun.
(d) Find the kinetic energy of the recoiling gun, and explain why
the recoiling gun does not kill the shooter.

√

Problem 5

5 The graph shows the force, in meganewtons, exerted by a
rocket engine on the rocket as a function of time. If the rocket’s
mass if 4000 kg, at what speed is the rocket moving when the engine
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Problem 8

stops firing? Assume it goes straight up, and neglect the force of
gravity, which is much less than a meganewton.

√

6 Cosmic rays are particles from outer space, mostly protons and
atomic nuclei, that are continually bombarding the earth. Most of
them, although they are moving extremely fast, have no discernible
effect even if they hit your body, because their masses are so small.
Their energies vary, however, and a very small minority of them
have extremely large energies. In some cases the energy is as much
as several Joules, which is comparable to the KE of a well thrown
rock! If you are in a plane at a high altitude and are so incredibly
unlucky as to be hit by one of these rare ultra-high-energy cosmic
rays, what would you notice, the momentum imparted to your body,
the energy dissipated in your body as heat, or both? Base your con-
clusions on numerical estimates, not just random speculation. (At
these high speeds, one should really take into account the devia-
tions from Newtonian physics described by Einstein’s special theory
of relativity. Don’t worry about that, though.)

7 Show that for a body made up of many equal masses, the
equation for the center of mass becomes a simple average of all the
positions of the masses.
8 The figure shows a view from above of a collision about to
happen between two air hockey pucks sliding without friction. They
have the same speed, vi, before the collision, but the big puck is 2.3
times more massive than the small one. Their sides have sticky stuff
on them, so when they collide, they will stick together. At what
angle will they emerge from the collision? In addition to giving a
numerical answer, please indicate by drawing on the figure how your
angle is defined. . Solution, p. 169

9 A flexible rope of mass m and length L slides without friction
over the edge of a table. Let x be the length of the rope that is
hanging over the edge at a given moment in time.
(a) Show that x satisfies the equation of motion d2x/dt2 = gx/L.
[Hint: Use F = dp/dt, which allows you to handle the two parts of
the rope separately even though mass is moving out of one part and
into the other.]
(b) Give a physical explanation for the fact that a larger value of
x on the right-hand side of the equation leads to a greater value of
the acceleration on the left side.
(c) When we take the second derivative of the function x(t) we are
supposed to get essentially the same function back again, except
for a constant out in front. The function ex has the property that
it is unchanged by differentiation, so it is reasonable to look for
solutions to this problem that are of the form x = bect, where b and
c are constants. Show that this does indeed provide a solution for
two specific values of c (and for any value of b).
(d) Show that the sum of any two solutions to the equation of motion
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is also a solution.
(e) Find the solution for the case where the rope starts at rest at
t = 0 with some nonzero value of x.

∫
?

10 A very massive object with velocity v collides head-on with
an object at rest whose mass is very small. No kinetic energy is
converted into other forms. Prove that the low-mass object recoils
with velocity 2v. [Hint: Use the center-of-mass frame of reference.]

11 When the contents of a refrigerator cool down, the changed
molecular speeds imply changes in both momentum and energy.
Why, then, does a fridge transfer power through its radiator coils,
but not force? . Solution, p. 169

12 A 10-kg bowling ball moving at 2.0 m/s hits a 1.0-kg bowling
pin, which is initially at rest. The other pins are all gone already,
and the collision is head-on, so that the motion is one-dimensional.
Assume that negligible amounts of heat and sound are produced.
Find the velocity of the pin immediately after the collision.

13 A rocket ejects exhaust with an exhaust velocity u. The
rate at which the exhaust mass is used (mass per unit time) is b.
We assume that the rocket accelerates in a straight line starting
from rest, and that no external forces act on it. Let the rocket’s
initial mass (fuel plus the body and payload) be mi, and mf be its
final mass, after all the fuel is used up. (a) Find the rocket’s final
velocity, v, in terms of u, mi, and mf . (b) A typical exhaust velocity
for chemical rocket engines is 4000 m/s. Estimate the initial mass
of a rocket that could accelerate a one-ton payload to 10% of the
speed of light, and show that this design won’t work. (For the sake
of the estimate, ignore the mass of the fuel tanks.)

∫
?

14 A firework shoots up into the air, and just before it explodes
it has a certain momentum and kinetic energy. What can you say
about the momenta and kinetic energies of the pieces immediately
after the explosion? [Based on a problem from PSSC Physics.]

. Solution, p. 169

15 Suppose a system consisting of pointlike particles has a total
kinetic energy Kcm measured in the center-of-mass frame of refer-
ence. Since they are pointlike, they cannot have any energy due to
internal motion.
(a) Prove that in a different frame of reference, moving with veloc-
ity u relative to the center-of-mass frame, the total kinetic energy
equals Kcm +M |u|2/2, where M is the total mass. [Hint: You can
save yourself a lot of writing if you express the total kinetic energy
using the dot product.] . Solution, p. 169
(b) Use this to prove that if energy is conserved in one frame of
reference, then it is conserved in every frame of reference. The total
energy equals the total kinetic energy plus the sum of the potential
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energies due to the particles’ interactions with each other, which
we assume depends only on the distance between particles. [For a
simpler numerical example, see problem 13 in ch. 1.] ?

16 The big difference between the equations for momentum and
kinetic energy is that one is proportional to v and one to v2. Both,
however, are proportional to m. Suppose someone tells you that
there’s a third quantity, funkosity, defined as f = m2v, and that
funkosity is conserved. How do you know your leg is being pulled?

. Solution, p. 169

17 A mass m moving at velocity v collides with a stationary
target having the same mass m. Find the maximum amount of
energy that can be released as heat and sound.
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A tornado touches down in Spring Hill, Kansas, May 20, 1957.

Chapter 5

Conservation of Angular
Momentum

“Sure, and maybe the sun won’t come up tomorrow.” Of course,
the sun only appears to go up and down because the earth spins,
so the cliche should really refer to the unlikelihood of the earth’s
stopping its rotation abruptly during the night. Why can’t it stop?
It wouldn’t violate conservation of momentum, because the earth’s
rotation doesn’t add anything to its momentum. While California
spins in one direction, some equally massive part of India goes the
opposite way, canceling its momentum. A halt to Earth’s rotation
would entail a drop in kinetic energy, but that energy could simply
be converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydro-
gen atom spins at the same rate for billions of years. A high-diver
who is rotating when he comes off the board does not need to make
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any physical effort to continue rotating, and indeed would be unable
to stop rotating before he hit the water.

These observations have the hallmarks of a conservation law:

A closed system is involved. Nothing is making an effort to
twist the earth, the hydrogen atom, or the high-diver. They are
isolated from rotation-changing influences, i.e., they are closed
systems.

Something remains unchanged. There appears to be a numer-
ical quantity for measuring rotational motion such that the total
amount of that quantity remains constant in a closed system.

Something can be transferred back and forth without
changing the total amount. In figure a, the jumper wants to
get his feet out in front of him so he can keep from doing a “face
plant” when he lands. Bringing his feet forward would involve a
certain quantity of counterclockwise rotation, but he didn’t start
out with any rotation when he left the ground. Suppose we con-
sider counterclockwise as positive and clockwise as negative. The
only way his legs can acquire some positive rotation is if some other
part of his body picks up an equal amount of negative rotation.
This is why he swings his arms up behind him, clockwise.

a / An early photograph of an old-fashioned long-jump.

What numerical measure of rotational motion is conserved? Car
engines and old-fashioned LP records have speeds of rotation mea-
sured in rotations per minute (r.p.m.), but the number of rota-
tions per minute (or per second) is not a conserved quantity. A
twirling figure skater, for instance, can pull her arms in to increase
her r.p.m.’s. The first section of this chapter deals with the nu-
merical definition of the quantity of rotation that results in a valid
conservation law.
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b / An overhead view of a
piece of putty being thrown at
a door. Even though the putty
is neither spinning nor traveling
along a curve, we must define it
as having some kind of “rotation”
because it is able to make the
door rotate.

c / As seen by someone standing
at the axis, the putty changes
its angular position. We there-
fore define it as having angular
momentum.

5.1 Conservation of Angular Momentum
When most people think of rotation, they think of a solid object
like a wheel rotating in a circle around a fixed point. Examples of
this type of rotation, called rigid rotation or rigid-body rotation, in-
clude a spinning top, a seated child’s swinging leg, and a helicopter’s
spinning propeller. Rotation, however, is a much more general phe-
nomenon, and includes noncircular examples such as a comet in
an elliptical orbit around the sun, or a cyclone, in which the core
completes a circle more quickly than the outer parts.

If there is a numerical measure of rotational motion that is a
conserved quantity, then it must include nonrigid cases like these,
since nonrigid rotation can be traded back and forth with rigid ro-
tation. For instance, there is a trick for finding out if an egg is
raw or hardboiled. If you spin a hardboiled egg and then stop it
briefly with your finger, it stops dead. But if you do the same with
a raw egg, it springs back into rotation because the soft interior was
still swirling around within the momentarily motionless shell. The
pattern of flow of the liquid part is presumably very complex and
nonuniform due to the asymmetric shape of the egg and the differ-
ent consistencies of the yolk and the white, but there is apparently
some way to describe the liquid’s total amount of rotation with a
single number, of which some percentage is given back to the shell
when you release it.

The best strategy is to devise a way of defining the amount of
rotation of a single small part of a system. The amount of rotation
of a system such as a cyclone will then be defined as the total of all
the contributions from its many small parts.

The quest for a conserved quantity of rotation even requires us
to broaden the rotation concept to include cases where the motion
doesn’t repeat or even curve around. If you throw a piece of putty
at a door, the door will recoil and start rotating. The putty was
traveling straight, not in a circle, but if there is to be a general
conservation law that can cover this situation, it appears that we
must describe the putty as having had some “rotation,” which it
then gave up to the door. The best way of thinking about it is to
attribute rotation to any moving object or part of an object that
changes its angle in relation to the axis of rotation. In the putty-
and-door example, the hinge of the door is the natural point to think
of as an axis, and the putty changes its angle as seen by someone
standing at the hinge. For this reason, the conserved quantity we are
investigating is called angular momentum. The symbol for angular
momentum can’t be a or m, since those are used for acceleration
and mass, so the symbol L is arbitrarily chosen instead.

Imagine a 1-kg blob of putty, thrown at the door at a speed of
1 m/s, which hits the door at a distance of 1 m from the hinge.
We define this blob to have 1 unit of angular momentum. When
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d / A putty blob thrown di-
rectly at the axis has no angular
motion, and therefore no angular
momentum. It will not cause the
door to rotate.

e / Only the component of
the velocity vector perpendicular
to the dashed line should be
counted into the definition of
angular momentum.

it hits the door, the door will recoil and start rotating. We can
use the speed at which the door recoils as a measure of the angular
momentum the blob brought in.1

Experiments show, not surprisingly, that a 2-kg blob thrown in
the same way makes the door rotate twice as fast, so the angular
momentum of the putty blob must be proportional to mass,

L ∝ m .

Similarly, experiments show that doubling the velocity of the
blob will have a doubling effect on the result, so its angular momen-
tum must be proportional to its velocity as well,

L ∝ mv .

You have undoubtedly had the experience of approaching a closed
door with one of those bar-shaped handles on it and pushing on the
wrong side, the side close to the hinges. You feel like an idiot, be-
cause you have so little leverage that you can hardly budge the door.
The same would be true with the putty blob. Experiments would
show that the amount of rotation the blob can give to the door is
proportional to the distance, r, from the axis of rotation, so angular
momentum must also be proportional to r,

L ∝ mvr .

We are almost done, but there is one missing ingredient. We
know on grounds of symmetry that a putty ball thrown directly
inward toward the hinge will have no angular momentum to give
to the door. After all, there would not even be any way to de-
cide whether the ball’s rotation was clockwise or counterclockwise
in this situation. It is therefore only the component of the blob’s
velocity vector perpendicular to the door that should be counted in
its angular momentum,

L = mv⊥r .

More generally, v⊥ should be thought of as the component of the
object’s velocity vector that is perpendicular to the line joining the
object to the axis of rotation.

We find that this equation agrees with the definition of the origi-
nal putty blob as having one unit of angular momentum, and we can
now see that the units of angular momentum are (kg·m/s)·m, i.e.,
kg·m2/s. This gives us a way of calculating the angular momentum
of any material object or any system consisting of material objects:

1We assume that the door is much more massive than the blob. Under this
assumption, the speed at which the door recoils is much less than the original
speed of the blob, so the blob has lost essentially all its angular momentum, and
given it to the door.
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f / A figure skater pulls in her
arms so that she can execute a
spin more rapidly.

angular momentum of a material object
The angular momentum of a moving particle is

L = mv⊥r ,

where m is its mass, v⊥ is the component of its velocity vector
perpendicular to the line joining it to the axis of rotation, and r is
its distance from the axis. Positive and negative signs are used to
describe opposite directions of rotation.

The angular momentum of a finite-sized object or a system
of many objects is found by dividing it up into many small parts,
applying the equation to each part, and adding to find the total
amount of angular momentum.

Note that r is not necessarily the radius of a circle. (As implied
by the qualifiers, matter isn’t the only thing that can have angular
momentum. Light can also have angular momentum, and the above
equation would not apply to light.)

Conservation of angular momentum has been verified over and
over again by experiment, and is now believed to be one of the three
most fundamental principles of physics, along with conservation of
energy and momentum.

A figure skater pulls her arms in example 1
When a figure skater is twirling, there is very little friction between
her and the ice, so she is essentially a closed system, and her
angular momentum is conserved. If she pulls her arms in, she is
decreasing r for all the atoms in her arms. It would violate con-
servation of angular momentum if she then continued rotating at
the same speed, i.e., taking the same amount of time for each
revolution, because her arms’ contributions to her angular mo-
mentum would have decreased, and no other part of her would
have increased its angular momentum. This is impossible be-
cause it would violate conservation of angular momentum. If her
total angular momentum is to remain constant, the decrease in r
for her arms must be compensated for by an overall increase in
her rate of rotation. That is, by pulling her arms in, she substan-
tially reduces the time for each rotation.
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h / Example 3. A view of the
earth-moon system from above
the north pole. All distances
have been highly distorted for
legibility. The earth’s rotation is
counterclockwise from this point
of view (arrow). The moon’s grav-
ity creates a bulge on the side
near it, because its gravitational
pull is stronger there, and an
“anti-bulge” on the far side, since
its gravity there is weaker. For
simplicity, let’s focus on the tidal
bulge closer to the moon. Its
frictional force is trying to slow
down the earth’s rotation, so its
force on the earth’s solid crust is
toward the bottom of the figure.
By Newton’s third law, the crust
must thus make a force on the
bulge which is toward the top of
the figure. This causes the bulge
to be pulled forward at a slight
angle, and the bulge’s gravity
therefore pulls the moon forward,
accelerating its orbital motion
about the earth and flinging it
outward.

g / Example 2.

Changing the axis example 2
An object’s angular momentum can be different depending on the
axis about which it rotates. Figure g shows shows two double-
exposure photographs a viola player tipping the bow in order to
cross from one string to another. Much more angular momentum
is required when playing near the bow’s handle, called the frog,
as in the panel on the right; not only are most of the atoms in the
bow at greater distances, r , from the axis of rotation, but the ones
in the tip also have more momentum, p. It is difficult for the player
to quickly transfer a large angular momentum into the bow, and
then transfer it back out just as quickly. (In the language of section
5.4, large torques are required.) This is one of the reasons that
string players tend to stay near the middle of the bow as much as
possible.

Earth’s slowing rotation and the receding moon example 3
As noted in chapter 1, the earth’s rotation is actually slowing down
very gradually, with the kinetic energy being dissipated as heat by
friction between the land and the tidal bulges raised in the seas
by the earth’s gravity. Does this mean that angular momentum is
not really perfectly conserved? No, it just means that the earth
is not quite a closed system by itself. If we consider the earth
and moon as a system, then the angular momentum lost by the
earth must be gained by the moon somehow. In fact very precise
measurements of the distance between the earth and the moon
have been carried out by bouncing laser beams off of a mirror
left there by astronauts, and these measurements show that the
moon is receding from the earth at a rate of 4 centimeters per
year! The moon’s greater value of r means that it has a greater
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angular momentum, and the increase turns out to be exactly the
amount lost by the earth. In the days of the dinosaurs, the days
were significantly shorter, and the moon was closer and appeared
bigger in the sky.

But what force is causing the moon to speed up, drawing it out
into a larger orbit? It is the gravitational forces of the earth’s tidal
bulges. The effect is described qualitatively in the caption of the
figure. The result would obviously be extremely difficult to calcu-
late directly, and this is one of those situations where a conserva-
tion law allows us to make precise quantitative statements about
the outcome of a process when the calculation of the process
itself would be prohibitively complex.

Restriction to rotation in a plane

Is angular momentum a vector, or a scalar? It does have a
direction in space, but it’s a direction of rotation, not a straight-line
direction like the directions of vectors such as velocity or force. It
turns out that there is a way of defining angular momentum as a
vector, but in this book the examples will be confined to a single
plane of rotation, i.e., effectively two-dimensional situations. In this
special case, we can choose to visualize the plane of rotation from
one side or the other, and to define clockwise and counterclockwise
rotation as having opposite signs of angular momentum.

Discussion Question

A Conservation of plain old momentum, p, can be thought of as the
greatly expanded and modified descendant of Galileo’s original principle
of inertia, that no force is required to keep an object in motion. The princi-
ple of inertia is counterintuitive, and there are many situations in which it
appears superficially that a force is needed to maintain motion, as main-
tained by Aristotle. Think of a situation in which conservation of angular
momentum, L, also seems to be violated, making it seem incorrectly that
something external must act on a closed system to keep its angular mo-
mentum from “running down.”

5.2 Angular Momentum in Planetary Motion
We now discuss the application of conservation of angular momen-
tum to planetary motion, both because of its intrinsic importance
and because it is a good way to develop a visual intuition for angular
momentum.

Kepler’s law of equal areas states that the area swept out by
a planet in a certain length of time is always the same. Angular
momentum had not been invented in Kepler’s time, and he did not
even know the most basic physical facts about the forces at work. He
thought of this law as an entirely empirical and unexpectedly simple
way of summarizing his data, a rule that succeeded in describing
and predicting how the planets sped up and slowed down in their

Section 5.2 Angular Momentum in Planetary Motion 113



i / The planet’s angular mo-
mentum is related to the rate at
which it sweeps out area.

elliptical paths. It is now fairly simple, however, to show that the
equal area law amounts to a statement that the planet’s angular
momentum stays constant.

There is no simple geometrical rule for the area of a pie wedge
cut out of an ellipse, but if we consider a very short time interval,
as shown in figure i, the shaded shape swept out by the planet is
very nearly a triangle. We do know how to compute the area of a
triangle. It is one half the product of the base and the height:

area =
1
2
bh .

We wish to relate this to angular momentum, which contains
the variables r and v⊥ . If we consider the sun to be the axis of
rotation, then the variable r is identical to the base of the triangle,
r = b. Referring to the magnified portion of the figure, v⊥ can be
related to h, because the two right triangles are similar:

h

distance traveled
=
v⊥
|v|

The area can thus be rewritten as

area =
1
2
r
v⊥(distance traveled)

|v|
.

The distance traveled equals |v|∆t, so this simplifies to

area =
1
2
rv⊥∆t .

We have found the following relationship between angular momen-
tum and the rate at which area is swept out:

L = 2m
area
∆t

.

The factor of 2 in front is simply a matter of convention, since any
conserved quantity would be an equally valid conserved quantity if
you multiplied it by a constant. The factor of m was not relevant
to Kepler, who did not know the planets’ masses, and who was only
describing the motion of one planet at a time.

We thus find that Kepler’s equal-area law is equivalent to a state-
ment that the planet’s angular momentum remains constant. But
wait, why should it remain constant? — the planet is not a closed
system, since it is being acted on by the sun’s gravitational force.
There are two valid answers. The first is that it is actually the to-
tal angular momentum of the sun plus the planet that is conserved.
The sun, however, is millions of times more massive than the typical
planet, so it accelerates very little in response to the planet’s gravi-
tational force. It is thus a good approximation to say that the sun
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Discussion question A.

doesn’t move at all, so that no angular momentum is transferred
between it and the planet.

The second answer is that to change the planet’s angular mo-
mentum requires not just a force but a force applied in a certain
way. In section 5.4 we discuss the transfer of angular momentum by
a force, but the basic idea here is that a force directly in toward the
axis does not change the angular momentum.

Discussion Questions
A Suppose an object is simply traveling in a straight line at constant
speed. If we pick some point not on the line and call it the axis of rotation,
is area swept out by the object at a constant rate? Would it matter if we
chose a different axis?

B The figure is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen
in the photograph. The bob was given a slight sideways push when it
was released, so it did not swing in a plane. The bright spot marks the
center, i.e., the position the bob would have if it hung straight down at us.
Does the bob’s angular momentum appear to remain constant if we con-
sider the center to be the axis of rotation? What if we choose a different
axis?

Discussion question B.

5.3 Two Theorems About Angular Momentum
With plain old momentum, p, we had the freedom to work in any
inertial frame of reference we liked. The same object could have
different values of momentum in two different frames, if the frames
were not at rest with respect to each other. Conservation of mo-
mentum, however, would be true in either frame. As long as we
employed a single frame consistently throughout a calculation, ev-
erything would work.

The same is true for angular momentum, and in addition there
is an ambiguity that arises from the definition of an axis of rotation.
For a wheel, the natural choice of an axis of rotation is obviously
the axle, but what about an egg rotating on its side? The egg
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j / Example 4.

has an asymmetric shape, and thus no clearly defined geometric
center. A similar issue arises for a cyclone, which does not even
have a sharply defined shape, or for a complicated machine with
many gears. The following theorem, the first of two presented in
this section without proof, explains how to deal with this issue.
Although I have put descriptive titles above both theorems, they
have no generally accepted names.

the choice of axis theorem
It is entirely arbitrary what point one defines as the axis for
purposes of calculating angular momentum. If a closed sys-
tem’s angular momentum is conserved when calculated with
one choice of axis, then it will also be conserved for any other
choice. Likewise, any inertial frame of reference may be used.

Colliding asteroids described with different axes example 4
Observers on planets A and B both see the two asteroids collid-
ing. The asteroids are of equal mass and their impact speeds are
the same. Astronomers on each planet decide to define their own
planet as the axis of rotation. Planet A is twice as far from the col-
lision as planet B. The asteroids collide and stick. For simplicity,
assume planets A and B are both at rest.

With planet A as the axis, the two asteroids have the same amount
of angular momentum, but one has positive angular momentum
and the other has negative. Before the collision, the total angular
momentum is therefore zero. After the collision, the two asteroids
will have stopped moving, and again the total angular momen-
tum is zero. The total angular momentum both before and after
the collision is zero, so angular momentum is conserved if you
choose planet A as the axis.

The only difference with planet B as axis is that r is smaller by a
factor of two, so all the angular momenta are halved. Even though
the angular momenta are different than the ones calculated by
planet A, angular momentum is still conserved.

The earth spins on its own axis once a day, but simultaneously
travels in its circular one-year orbit around the sun, so any given
part of it traces out a complicated loopy path. It would seem difficult
to calculate the earth’s angular momentum, but it turns out that
there is an intuitively appealing shortcut: we can simply add up the
angular momentum due to its spin plus that arising from its center
of mass’s circular motion around the sun. This is a special case of
the following general theorem:

the spin theorem
An object’s angular momentum with respect to some outside
axis A can be found by adding up two parts:
(1) The first part is the object’s angular momentum found
by using its own center of mass as the axis, i.e., the angular
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k / Everyone has a strong
tendency to think of the diver as
rotating about his own center of
mass. However, he is flying in
an arc, and he also has angular
momentum because of this
motion.

l / This rigid object has angu-
lar momentum both because it is
spinning about its center of mass
and because it is moving through
space.

momentum the object has because it is spinning.
(2) The other part equals the angular momentum that the
object would have with respect to the axis A if it had all its
mass concentrated at and moving with its center of mass.

A system with its center of mass at rest example 5
In the special case of an object whose center of mass is at rest,
the spin theorem implies that the object’s angular momentum is
the same regardless of what axis we choose. (This is an even
stronger statement than the choice of axis theorem, which only
guarantees that angular momentum is conserved for any given
choice of axis, without specifying that it is the same for all such
choices.)

Angular momentum of a rigid object example 6
. A motorcycle wheel has almost all its mass concentrated at
the outside. If the wheel has mass m and radius r , and the time
required for one revolution is T , what is the spin part of its angular
momentum?

. This is an example of the commonly encountered special case
of rigid motion, as opposed to the rotation of a system like a hur-
ricane in which the different parts take different amounts of time
to go around. We don’t really have to go through a laborious
process of adding up contributions from all the many parts of a
wheel, because they are all at about the same distance from the
axis, and are all moving around the axis at about the same speed.
The velocity is all perpendicular to the spokes,

v⊥ = v
= (circumference)/T
= 2πr/T ,

and the angular momentum of the wheel about its center is

L = mv⊥r
= m(2πr/T )r

= 2πmr2/T .

Note that although the factors of 2π in this expression is peculiar
to a wheel with its mass concentrated on the rim, the proportional-
ity to m/T would have been the same for any other rigidly rotating
object. Although an object with a noncircular shape does not have
a radius, it is also true in general that angular momentum is pro-
portional to the square of the object’s size for fixed values of m and
T . For instance doubling an object’s size doubles both the v⊥ and
r factors in the contribution of each of its parts to the total angular
momentum, resulting in an overall factor of four increase.

The figure shows some examples of angular momenta of various
shapes rotating about their centers of mass. The equations for their
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angular momenta were derived using calculus, as described in my
calculus-based book Simple Nature. Do not memorize these equa-
tions!

The hammer throw example 7
. In the men’s Olympic hammer throw, a steel ball of radius 6.1 cm
is swung on the end of a wire of length 1.22 m. What fraction of
the ball’s angular momentum comes from its rotation, as opposed
to its motion through space?

. It’s always important to solve problems symbolically first, and
plug in numbers only at the end, so let the radius of the ball be b,
and the length of the wire `. If the time the ball takes to go once
around the circle is T , then this is also the time it takes to revolve
once around its own axis. Its speed is v = 2π`/T , so its angular
momentum due to its motion through space is mv` = 2πm`2/T .
Its angular momentum due to its rotation around its own cen-
ter is (4π/5)mb2/T . The ratio of these two angular momenta is
(2/5)(b/`)2 = 1.0×10−3. The angular momentum due to the ball’s
spin is extremely small.
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m / Example 8.

Toppling a rod example 8
. A rod of length b and mass m stands upright. We want to strike
the rod at the bottom, causing it to fall and land flat. Find the
momentum, p, that should be delivered, in terms of m, b, and
g. Can this really be done without having the rod scrape on the
floor?

. This is a nice example of a question that can very nearly be
answered based only on units. Since the three variables, m, b,
and g, all have different units, they can’t be added or subtracted.
The only way to combine them mathematically is by multiplication
or division. Multiplying one of them by itself is exponentiation, so
in general we expect that the answer must be of the form

p = Amjbkg l ,

where A, j , k , and l are unitless constants. The result has to have
units of kg·m/s. To get kilograms to the first power, we need

j = 1 ,

meters to the first power requires

k + l = 1 ,

and seconds to the power −1 implies

l = 1/2 .

We find j = 1, k = 1/2, and l = 1/2, so the solution must be of the
form

p = Am
√

bg .

Note that no physics was required!

Consideration of units, however, won’t help us to find the unit-
less constant A. Let t be the time the rod takes to fall, so that
(1/2)gt2 = b/2. If the rod is going to land exactly on its side,
then the number of revolutions it completes while in the air must
be 1/4, or 3/4, or 5/4, . . . , but all the possibilities greater than 1/4
would cause the head of the rod to collide with the floor prema-
turely. The rod must therefore rotate at a rate that would cause
it to complete a full rotation in a time T = 4t , and it has angular
momentum L = (π/6)mb2/T .

The momentum lost by the object striking the rod is p, and by
conservation of momentum, this is the amount of momentum, in
the horizontal direction, that the rod acquires. In other words,
the rod will fly forward a little. However, this has no effect on
the solution to the problem. More importantly, the object striking
the rod loses angular momentum bp/2, which is also transferred
to the rod. Equating this to the expression above for L, we find
p = (π/12)m

√
bg.
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n / Energy, momentum, and
angular momentum can be trans-
ferred. The rates of transfer are
called power, force, and torque.

o / The plane’s four engines
produce zero total torque but not
zero total force.

Finally, we need to know whether this can really be done without
having the foot of the rod scrape on the floor. The figure shows
that the answer is no for this rod of finite width, but it appears
that the answer would be yes for a sufficiently thin rod. This is
analyzed further in homework problem 28 on page 141.

Discussion Question

A In the example of the colliding asteroids, suppose planet A was mov-
ing toward the top of the page, at the same speed as the bottom asteroid.
How would planet A’s astronomers describe the angular momenta of the
asteroids? Would angular momentum still be conserved?

5.4 Torque: the Rate of Transfer of Angular
Momentum

Force can be interpreted as the rate of transfer of momentum. The
equivalent in the case of angular momentum is called torque (rhymes
with “fork”). Where force tells us how hard we are pushing or
pulling on something, torque indicates how hard we are twisting on
it. Torque is represented by the Greek letter tau, τ , and the rate
of change of an object’s angular momentum equals the total torque
acting on it,

τtotal =
∆L
∆t

.

(If the angular momentum does not change at a constant rate, the
total torque equals the slope of the tangent line on a graph of L
versus t.)

As with force and momentum, it often happens that angular
momentum recedes into the background and we focus our interest on
the torques. The torque-focused point of view is exemplified by the
fact that many scientifically untrained but mechanically apt people
know all about torque, but none of them have heard of angular
momentum. Car enthusiasts eagerly compare engines’ torques, and
there is a tool called a torque wrench which allows one to apply a
desired amount of torque to a screw and avoid overtightening it.

Torque distinguished from force

Of course a force is necessary in order to create a torque — you
can’t twist a screw without pushing on the wrench — but force and
torque are two different things. One distinction between them is
direction. We use positive and negative signs to represent forces in
the two possible directions along a line. The direction of a torque,
however, is clockwise or counterclockwise, not a linear direction.

The other difference between torque and force is a matter of
leverage. A given force applied at a door’s knob will change the
door’s angular momentum twice as rapidly as the same force applied
halfway between the knob and the hinge. The same amount of force
produces different amounts of torque in these two cases.
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p / The simple physical situa-
tion we use to derive an equation
for torque. A force that points
directly in at or out away from the
axis produces neither clockwise
nor counterclockwise angular
momentum. A force in the per-
pendicular direction does transfer
angular momentum.

It is possible to have a zero total torque with a nonzero total
force. An airplane with four jet engines, o, would be designed so
that their forces are balanced on the left and right. Their forces are
all in the same direction, but the clockwise torques of two of the
engines are canceled by the counterclockwise torques of the other
two, giving zero total torque.

Conversely we can have zero total force and nonzero total torque.
A merry-go-round’s engine needs to supply a nonzero torque on it
to bring it up to speed, but there is zero total force on it. If there
was not zero total force on it, its center of mass would accelerate!

Relationship between force and torque

How do we calculate the amount of torque produced by a given
force? Since it depends on leverage, we should expect it to depend
on the distance between the axis and the point of application of
the force. We’ll derive an equation relating torque to force for a
particular very simple situation, and state without proof that the
equation actually applies to all situations.

Consider a pointlike object which is initially at rest at a distance
r from the axis we have chosen for defining angular momentum.
We first observe that a force directly inward or outward, along the
line connecting the axis to the object, does not impart any angular
momentum to the object.

A force perpendicular to the line connecting the axis and the
object does, however, make the object pick up angular momentum.
Newton’s second law gives

a =
F

m
,

and assuming for simplicity that the force is constant, the constant
acceleration equation a = ∆v/∆t allows us to find the velocity the
object acquires after a time ∆t,

∆v =
F∆t
m

.

We are trying to relate force to a change in angular momentum, so
we multiply both sides of the equation by mr to give

m∆vr = F∆tr
∆L = F∆tr .

Dividing by ∆t gives the torque:
∆L
∆t

= Fr

τ = Fr .
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q / The geometric relationships
refered to in the relationship
between force and torque.

If a force acts at an angle other than 0 or 90 ◦with respect to the
line joining the object and the axis, it would be only the component
of the force perpendicular to the line that would produce a torque,

τ = F⊥r .

Although this result was proved under a simplified set of circum-
stances, it is more generally valid:

relationship between force and torque
The rate at which a force transfers angular momentum to an
object, i.e., the torque produced by the force, is given by

|τ | = r|F⊥| ,

where r is the distance from the axis to the point of applica-
tion of the force, and F⊥ is the component of the force that
is perpendicular to the line joining the axis to the point of
application.

The equation is stated with absolute value signs because the
positive and negative signs of force and torque indicate different
things, so there is no useful relationship between them. The sign
of the torque must be found by physical inspection of the case at
hand.

From the equation, we see that the units of torque can be writ-
ten as newtons multiplied by meters. Metric torque wrenches are
calibrated in N·m, but American ones use foot-pounds, which is also
a unit of distance multiplied by a unit of force. We know from our
study of mechanical work that newtons multiplied by meters equal
joules, but torque is a completely different quantity from work, and
nobody writes torques with units of joules, even though it would be
technically correct.

self-check A
Compare the magnitudes and signs of the four torques shown in the
figure. . Answer, p. 166
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r / The quantity r⊥.

How torque depends on the direction of the force example 9
. How can the torque applied to the wrench in the figure be ex-
pressed in terms of r , |F |, and the angle θ?

. The force vector and its F⊥ component form the hypotenuse
and one leg of a right triangle,

and the interior angle opposite to F⊥ equals θ. The absolute value
of F⊥ can thus be expressed as

F⊥ = |F| sin θ ,

leading to
|τ| = r |F| sin θ .

Sometimes torque can be more neatly visualized in terms of the
quantity r⊥ shown in figure r, which gives us a third way of express-
ing the relationship between torque and force:

|τ | = r⊥|F| .

Of course you would not want to go and memorize all three
equations for torque. Starting from any one of them you could easily
derive the other two using trigonometry. Familiarizing yourself with
them can however clue you in to easier avenues of attack on certain
problems.

The torque due to gravity

Up until now we’ve been thinking in terms of a force that acts
at a single point on an object, such as the force of your hand on the
wrench. This is of course an approximation, and for an extremely
realistic calculation of your hand’s torque on the wrench you might
need to add up the torques exerted by each square millimeter where
your skin touches the wrench. This is seldom necessary. But in
the case of a gravitational force, there is never any single point at
which the force is applied. Our planet is exerting a separate tug on
every brick in the Leaning Tower of Pisa, and the total gravitational
torque on the tower is the sum of the torques contributed by all the
little forces. Luckily there is a trick that allows us to avoid such
a massive calculation. It turns out that for purposes of computing
the total gravitational torque on an object, you can get the right
answer by just pretending that the whole gravitational force acts at
the object’s center of mass.
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t / Example 11.

s / Example 10.

Gravitational torque on an outstretched arm example 10
. Your arm has a mass of 3.0 kg, and its center of mass is 30
cm from your shoulder. What is the gravitational torque on your
arm when it is stretched out horizontally to one side, taking the
shoulder to be the axis?
. The total gravitational force acting on your arm is

|F | = (3.0 kg)(9.8 m/s2) = 29 N .

For the purpose of calculating the gravitational torque, we can
treat the force as if it acted at the arm’s center of mass. The force
is straight down, which is perpendicular to the line connecting the
shoulder to the center of mass, so

F⊥ = |F | = 29 N .

Continuing to pretend that the force acts at the center of the arm,
r equals 30 cm = 0.30 m, so the torque is

τ = rF⊥ = 9 N·m .

Cow tipping example 11
In 2005, Dr. Margo Lillie and her graduate student Tracy Boech-
ler published a study claiming to debunk cow tipping. Their claim
was based on an analysis of the torques that would be required
to tip a cow, which showed that one person wouldn’t be able to
make enough torque to do it. A lively discussion ensued on the
popular web site slashdot.org (“news for nerds, stuff that mat-
ters”) concerning the validity of the study. Personally, I had al-
ways assumed that cow-tipping was a group sport anyway, but as
a physicist, I also had some quibbles with their calculation. Here’s
my own analysis.
There are three forces on the cow: the force of gravity FW , the
ground’s normal force FN , and the tippers’ force FA.

As soon as the cow’s left hooves (on the right from our point of
view) break contact with the ground, the ground’s force is being
applied only to hooves on the other side. We don’t know the
ground’s force, and we don’t want to find it. Therefore we take
the axis to be at its point of application, so that its torque is zero.

For the purpose of computing torques, we can pretend that grav-
ity acts at the cow’s center of mass, which I’ve placed a little
lower than the center of its torso, since its legs and head also
have some mass, and the legs are more massive than the head
and stick out farther, so they lower the c.m. more than the head
raises it. The angle θW between the vertical gravitational force
and the line rW is about 14 ◦. (An estimate by Matt Semke at the
University of Nebraska-Lincoln gives 20 ◦, which is in the same
ballpark.)
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To generate the maximum possible torque with the least possible
force, the tippers want to push at a point as far as possible from
the axis, which will be the shoulder on the other side, and they
want to push at a 90 degree angle with respect to the radius line
rA.

When the tippers are just barely applying enough force to raise
the cow’s hooves on one side, the total torque has to be just
slightly more than zero. (In reality, they want to push a lot harder
than this — hard enough to impart a lot of angular momentum to
the cow fair in a short time, before it gets mad and hurts them.
We’re just trying to calculate the bare minimum force they can
possibly use, which is the question that science can answer.) Set-
ting the total torque equal to zero,

τN + τW + τA = 0 ,

and letting counterclockwise torques be positive, we have

0−mgrW sin θW + FArA sin 90 ◦ = 0

FA =
rW

rA
mg sin θW

≈ 1
1.5

(680 kg)(9.8 m/s2) sin 14 ◦

= 1100 N .

The 680 kg figure for the typical mass of a cow is due to Lillie
and Boechler, who are veterinarians, so I assume it’s fairly accu-
rate. My estimate of 1100 N comes out significantly lower than
their 1400 N figure, mainly because their incorrect placement of
the center of mass gives θW = 24 ◦. I don’t think 1100 N is an
impossible amount of force to require of one big, strong person
(it’s equivalent to lifting about 110 kg, or 240 pounds), but given
that the tippers need to impart a large angular momentum fairly
quickly, it’s probably true that several people would be required.

The main practical issue with cow tipping is that cows generally
sleep lying down. Falling on its side can also seriously injure a
cow.
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Discussion question B.

Discussion question E.

Discussion Questions

A This series of discussion questions deals with past students’ incorrect
reasoning about the following problem.

Suppose a comet is at the point in its orbit shown in the figure. The
only force on the comet is the sun’s gravitational force.

Throughout the question, define all torques and angular momenta
using the sun as the axis.

(1) Is the sun producing a nonzero torque on the comet? Explain.
(2) Is the comet’s angular momentum increasing, decreasing, or
staying the same? Explain.

Explain what is wrong with the following answers. In some cases, the an-
swer is correct, but the reasoning leading up to it is wrong. (a) Incorrect
answer to part (1): “Yes, because the sun is exerting a force on the comet,
and the comet is a certain distance from the sun.”
(b) Incorrect answer to part (1): “No, because the torques cancel out.”
(c) Incorrect answer to part (2): “Increasing, because the comet is speed-
ing up.”

B Which claw hammer would make it easier to get the nail out of the
wood if the same force was applied in the same direction?

C You whirl a rock over your head on the end of a string, and gradually
pull in the string, eventually cutting the radius in half. What happens to
the rock’s angular momentum? What changes occur in its speed, the time
required for one revolution, and its acceleration? Why might the string
break?
D A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?

E The photo shows an amusement park ride whose two cars rotate in
opposite directions. Why is this a good design?
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u / The windmills are not closed
systems, but angular momentum
is being transferred out of them
at the same rate it is transferred
in, resulting in constant angular
momentum. To get an idea of
the huge scale of the modern
windmill farm, note the sizes of
the trucks and trailers.

5.5 Statics
Equilibrium

There are many cases where a system is not closed but maintains
constant angular momentum. When a merry-go-round is running at
constant angular momentum, the engine’s torque is being canceled
by the torque due to friction.

When an object has constant momentum and constant angular
momentum, we say that it is in equilibrium. This is a scientific
redefinition of the common English word, since in ordinary speech
nobody would describe a car spinning out on an icy road as being
in equilibrium.

Very commonly, however, we are interested in cases where an ob-
ject is not only in equilibrium but also at rest, and this corresponds
more closely to the usual meaning of the word. Trees and bridges
have been designed by evolution and engineers to stay at rest, and
to do so they must have not just zero total force acting on them but
zero total torque. It is not enough that they don’t fall down, they
also must not tip over. Statics is the branch of physics concerned
with problems such as these.

Solving statics problems is now simply a matter of applying and
combining some things you already know:

• You know the behaviors of the various types of forces, for
example that a frictional force is always parallel to the surface
of contact.

• You know about vector addition of forces. It is the vector sum
of the forces that must equal zero to produce equilibrium.

• You know about torque. The total torque acting on an object
must be zero if it is to be in equilibrium.

• You know that the choice of axis is arbitrary, so you can make
a choice of axis that makes the problem easy to solve.

In general, this type of problem could involve four equations in four
unknowns: three equations that say the force components add up
to zero, and one equation that says the total torque is zero. Most
cases you’ll encounter will not be this complicated. In the following
example, only the equation for zero total torque is required in order
to get an answer.
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v / Example 12.

A flagpole example 12
. A 10-kg flagpole is being held up by a lightweight horizontal
cable, and is propped against the foot of a wall as shown in the
figure. If the cable is only capable of supporting a tension of 70
N, how great can the angle α be without breaking the cable?

. All three objects in the figure are supposed to be in equilibrium:
the pole, the cable, and the wall. Whichever of the three objects
we pick to investigate, all the forces and torques on it have to
cancel out. It is not particularly helpful to analyze the forces and
torques on the wall, since it has forces on it from the ground that
are not given and that we don’t want to find. We could study the
forces and torques on the cable, but that doesn’t let us use the
given information about the pole. The object we need to analyze
is the pole.

The pole has three forces on it, each of which may also result in
a torque: (1) the gravitational force, (2) the cable’s force, and (3)
the wall’s force.

We are free to define an axis of rotation at any point we wish, and
it is helpful to define it to lie at the bottom end of the pole, since
by that definition the wall’s force on the pole is applied at r = 0
and thus makes no torque on the pole. This is good, because we
don’t know what the wall’s force on the pole is, and we are not
trying to find it.

With this choice of axis, there are two nonzero torques on the
pole, a counterclockwise torque from the cable and a clockwise
torque from gravity. Choosing to represent counterclockwise torques
as positive numbers, and using the equation |τ| = r |F | sin θ, we
have

rcable|Fcable| sin θcable − rgrav |Fgrav | sin θgrav = 0 .

A little geometry gives θcable = 90 ◦ − α and θgrav = α, so

rcable|Fcable| sin(90 ◦ − α)− rgrav |Fgrav | sin α = 0 .

The gravitational force can be considered as acting at the pole’s
center of mass, i.e., at its geometrical center, so rcable is twice
rgrav , and we can simplify the equation to read

2|Fcable| sin(90 ◦ − α)− |Fgrav | sin α = 0 .

These are all quantities we were given, except for α, which is the
angle we want to find. To solve for α we need to use the trig
identity sin(90 ◦ − x) = cos x ,

2|Fcable| cos α− |Fgrav | sin α = 0 ,
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w / Example 13.

which allows us to find

tan α = 2
|Fcable|
|Fgrav |

α = tan−1
(

2
|Fcable|
|Fgrav |

)
= tan−1

(
2× 70 N

98 N

)
= 55 ◦ .

Art! example 13
. The abstract sculpture shown in figure w contains a cube of
mass m and sides of length b. The cube rests on top of a cylinder,
which is off-center by a distance a. Find the tension in the cable.

. There are four forces on the cube: a gravitational force mg, the
force FT from the cable, the upward normal force from the cylin-
der, FN , and the horizontal static frictional force from the cylinder,
Fs.

The total force on the cube in the vertical direction is zero:

FN −mg = 0 .

As our axis for defining torques, it’s convenient to choose the point
of contact between the cube and the cylinder, because then nei-
ther Fs nor FN makes any torque. The cable’s torque is counter-
clockwise, the torque due to gravity is clockwise. Letting counter-
clockwise torques be positive, and using the convenient equation
τ = r⊥F , we find the equation for the total torque:

bFT −mga = 0 .

We could also write down the equation saying that the total hori-
zontal force is zero, but that would bring in the cylinder’s frictional
force on the cube, which we don’t know and don’t need to find. We
already have two equations in the two unknowns FT and FN , so
there’s no need to make it into three equations in three unknowns.
Solving the first equation for FN = mg, we then substitute into the
second equation to eliminate FN , and solve for FT = (a/b)mg.

As a check, our result makes sense when a = 0; the cube is
balanced on the cylinder, so the cable goes slack.
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x / Stable and unstable equi-
libria.

y / The dancer’s equilibrium
is unstable. If she didn’t con-
stantly make tiny adjustments,
she would tip over.

z / Example 14.

Stable and unstable equilibria

A pencil balanced upright on its tip could theoretically be in
equilibrium, but even if it was initially perfectly balanced, it would
topple in response to the first air current or vibration from a pass-
ing truck. The pencil can be put in equilibrium, but not in stable
equilibrium. The things around us that we really do see staying still
are all in stable equilibrium.

Why is one equilibrium stable and another unstable? Try push-
ing your own nose to the left or the right. If you push it a millimeter
to the left, your head responds with a gentle force to the right, which
keeps your nose from flying off of your face. If you push your nose a
centimeter to the left, your face’s force on your nose becomes much
stronger. The defining characteristic of a stable equilibrium is that
the farther the object is moved away from equilibrium, the stronger
the force is that tries to bring it back.

The opposite is true for an unstable equilibrium. In the top
figure, the ball resting on the round hill theoretically has zero total
force on it when it is exactly at the top. But in reality the total
force will not be exactly zero, and the ball will begin to move off to
one side. Once it has moved, the net force on the ball is greater than
it was, and it accelerates more rapidly. In an unstable equilibrium,
the farther the object gets from equilibrium, the stronger the force
that pushes it farther from equilibrium.

This idea can be rephrased in terms of energy. The difference
between the stable and unstable equilibria shown in figure x is that
in the stable equilibrium, the potential energy is at a minimum, and
moving to either side of equilibrium will increase it, whereas the
unstable equilibrium represents a maximum.

Note that we are using the term “stable” in a weaker sense than
in ordinary speech. A domino standing upright is stable in the sense
we are using, since it will not spontaneously fall over in response to
a sneeze from across the room or the vibration from a passing truck.
We would only call it unstable in the technical sense if it could be
toppled by any force, no matter how small. In everyday usage, of
course, it would be considered unstable, since the force required to
topple it is so small.

An application of calculus example 14
. Nancy Neutron is living in a uranium nucleus that is undergoing
fission. Nancy’s potential energy as a function of position can be
approximated by PE = x4 − x2, where all the units and numeri-
cal constants have been suppressed for simplicity. Use calculus
to locate the equilibrium points, and determine whether they are
stable or unstable.

. The equilibrium points occur where the PE is at a minimum or
maximum, and minima and maxima occur where the derivative
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aa / The biceps muscle flexes the
arm.

ab / The triceps extends the
arm.

(which equals minus the force on Nancy) is zero. This deriva-
tive is dPE/dx = 4x3 − 2x , and setting it equal to zero, we have
x = 0,±1/

√
2. Minima occur where the second derivative is pos-

itive, and maxima where it is negative. The second derivative
is 12x2 − 2, which is negative at x = 0 (unstable) and positive at
x = ±1/

√
2 (stable). Interpretation: the graph of the PE is shaped

like a rounded letter ‘W,’ with the two troughs representing the two
halves of the splitting nucleus. Nancy is going to have to decide
which half she wants to go with.

5.6 Simple Machines: The Lever
Although we have discussed some simple machines such as the pul-
ley, without the concept of torque we were not yet ready to ad-
dress the lever, which is the machine nature used in designing living
things, almost to the exclusion of all others. (We can speculate what
life on our planet might have been like if living things had evolved
wheels, gears, pulleys, and screws.) The figures show two examples
of levers within your arm. Different muscles are used to flex and
extend the arm, because muscles work only by contraction.

Analyzing example aa physically, there are two forces that do
work. When we lift a load with our biceps muscle, the muscle does
positive work, because it brings the bone in the forearm in the direc-
tion it is moving. The load’s force on the arm does negative work,
because the arm moves in the direction opposite to the load’s force.
This makes sense, because we expect our arm to do positive work on
the load, so the load must do an equal amount of negative work on
the arm. (If the biceps was lowering a load, the signs of the works
would be reversed. Any muscle is capable of doing either positive
or negative work.)

There is also a third force on the forearm: the force of the upper
arm’s bone exerted on the forearm at the elbow joint (not shown
with an arrow in the figure). This force does no work, because the
elbow joint is not moving.

Because the elbow joint is motionless, it is natural to define our
torques using the joint as the axis. The situation now becomes
quite simple, because the upper arm bone’s force exerted at the
elbow neither does work nor creates a torque. We can ignore it
completely. In any lever there is such a point, called the fulcrum.

If we restrict ourselves to the case in which the forearm rotates
with constant angular momentum, then we know that the total
torque on the forearm is zero,

τmuscle + τload = 0 .

If we choose to represent counterclockwise torques as positive, then
the muscle’s torque is positive, and the load’s is negative. In terms
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of their absolute values,

|τmuscle| = |τload| .

Assuming for simplicity that both forces act at angles of 90 ◦with
respect to the lines connecting the axis to the points at which they
act, the absolute values of the torques are

rmuscleFmuscle = rloadFarm ,

where rmuscle, the distance from the elbow joint to the biceps’ point
of insertion on the forearm, is only a few cm, while rload might be 30
cm or so. The force exerted by the muscle must therefore be about
ten times the force exerted by the load. We thus see that this lever
is a force reducer. In general, a lever may be used either to increase
or to reduce a force.

Why did our arms evolve so as to reduce force? In general,
your body is built for compactness and maximum speed of motion
rather than maximum force. This is the main anatomical difference
between us and the Neanderthals (their brains covered the same
range of sizes as those of modern humans), and it seems to have
worked for us.

As with all machines, the lever is incapable of changing the
amount of mechanical work we can do. A lever that increases force
will always reduce motion, and vice versa, leaving the amount of
work unchanged.

It is worth noting how simple and yet how powerful this analysis
was. It was simple because we were well prepared with the concepts
of torque and mechanical work. In anatomy textbooks, whose read-
ers are assumed not to know physics, there is usually a long and
complicated discussion of the different types of levers. For example,
the biceps lever, aa, would be classified as a class III lever, since it
has the fulcrum and load on the ends and the muscle’s force acting
in the middle. The triceps, ab, is called a class I lever, because the
load and muscle’s force are on the ends and the fulcrum is in the
middle. How tiresome! With a firm grasp of the concept of torque,
we realize that all such examples can be analyzed in much the same
way. Physics is at its best when it lets us understand many appar-
ently complicated phenomena in terms of a few simple yet powerful
concepts.
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ac / The r −φ representation of a
curve.

ad / Proof that the two an-
gles labeled φ are in fact equal:
The definition of an ellipse is that
the sum of the distances from
the two foci stays constant. If we
move a small distance ` along the
ellipse, then one distance shrinks
by an amount ` cos φ1, while the
other grows by ` cos φ2. These
are equal, so φ1 = φ2.

5.7 ? Proof of Kepler’s Elliptical Orbit Law
Kepler determined purely empirically that the planets’ orbits were
ellipses, without understanding the underlying reason in terms of
physical law. Newton’s proof of this fact based on his laws of motion
and law of gravity was considered his crowning achievement both
by him and by his contemporaries, because it showed that the same
physical laws could be used to analyze both the heavens and the
earth. Newton’s proof was very lengthy, but by applying the more
recent concepts of conservation of energy and angular momentum
we can carry out the proof quite simply and succinctly, and without
calculus.

The basic idea of the proof is that we want to describe the shape
of the planet’s orbit with an equation, and then show that this equa-
tion is exactly the one that represents an ellipse. Newton’s original
proof had to be very complicated because it was based directly on
his laws of motion, which include time as a variable. To make any
statement about the shape of the orbit, he had to eliminate time
from his equations, leaving only space variables. But conservation
laws tell us that certain things don’t change over time, so they have
already had time eliminated from them.

There are many ways of representing a curve by an equation, of
which the most familiar is y = ax + b for a line in two dimensions.
It would be perfectly possible to describe a planet’s orbit using an
x − y equation like this, but remember that we are applying con-
servation of angular momentum, and the space variables that occur
in the equation for angular momentum are the distance from the
axis, r, and the angle between the velocity vector and the r vector,
which we will call φ. The planet will have φ=90 ◦when it is moving
perpendicular to the r vector, i.e., at the moments when it is at its
smallest or greatest distances from the sun. When φ is less than
90 ◦the planet is approaching the sun, and when it is greater than
90 ◦it is receding from it. Describing a curve with an r−φ equation
is like telling a driver in a parking lot a certain rule for what direc-
tion to steer based on the distance from a certain streetlight in the
middle of the lot.

The proof is broken into the three parts for easier digestion.
The first part is a simple and intuitively reasonable geometrical fact
about ellipses, whose proof we relegate to the caption of figure ad;
you will not be missing much if you merely absorb the result without
reading the proof.

(1) If we use one of the two foci of an ellipse as an axis for
defining the variables r and φ, then the angle between the tangent
line and the line drawn to the other focus is the same as φ, i.e., the
two angles labeled φ in figure ad are in fact equal.

The other two parts form the meat of our proof. We state the
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ae / Proof of part (3).

results first and then prove them.

(2) A planet, moving under the influence of the sun’s gravity
with less then the energy required to escape, obeys an equation of
the form

sinφ =
1√

−pr2 + qr
,

where p and q are positive constants that depend on the planet’s
energy and angular momentum.

(3) A curve is an ellipse if and only if its r−φ equation is of the
form

sinφ =
1√

−pr2 + qr
,

where p and q are constants that depend on the size and shape of
the ellipse and p is greater than zero.

Proof of part (2)

The component of the planet’s velocity vector that is perpen-
dicular to the r vector is v⊥ = v sinφ, so conservation of angular
momentum tells us that L = mrv sinφ is a constant. Since the
planet’s mass is a constant, this is the same as the condition

rv sinφ = constant .

Conservation of energy gives

1
2
mv2 − GMm

r
= constant .

We solve the first equation for v and plug into the second equation
to eliminate v. Straightforward algebra then leads to the equation
claimed above, with the constant p being positive because of our
assumption that the planet’s energy is insufficient to escape from
the sun, i.e., its total energy is negative.

Proof of part (3)

We define the quantities α, d, and s as shown in the figure. The
law of cosines gives

d2 = r2 + s2 − 2rs cosα .

Using α = 180 ◦−2φ and the trigonometric identities cos(180 ◦−x) =
− cosx and cos 2x = 1− 2 sin2 x, we can rewrite this as

d2 = r2 + s2 − 2rs
(
2 sin2 φ− 1

)
.

Straightforward algebra transforms this into

sin φ =

√
(r + s)2 − d2

4rs
.

Since r + s is constant, the top of the fraction is constant, and the
denominator can be rewritten as 4rs = 4r(constant − r), which is
equivalent to the desired form.
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Summary
Selected Vocabulary
angular momen-
tum . . . . . . . .

a measure of rotational motion; a conserved
quantity for a closed system

axis . . . . . . . . An arbitrarily chosen point used in the defini-
tion of angular momentum. Any object whose
direction changes relative to the axis is consid-
ered to have angular momentum. No matter
what axis is chosen, the angular momentum of
a closed system is conserved.

torque . . . . . . the rate of change of angular momentum; a
numerical measure of a force’s ability to twist
on an object

equilibrium . . . a state in which an object’s momentum and
angular momentum are constant

stable equilibrium one in which a force always acts to bring the
object back to a certain point

unstable equilib-
rium . . . . . . . .

one in which any deviation of the object from
its equilibrium position results in a force push-
ing it even farther away

Notation
L . . . . . . . . . . angular momentum
t . . . . . . . . . . torque

T the time required for a rigidly rotating body to complete one
rotation

Other Terminology and Notation
period . . . . . . . a name for the variable T defined above
moment of iner-
tia, I . . . . . . .

the proportionality constant in the equation
L = 2πI/T

Summary

Angular momentum is a measure of rotational motion which is
conserved for a closed system. This book only discusses angular
momentum for rotation of material objects in two dimensions. Not
all rotation is rigid like that of a wheel or a spinning top. An example
of nonrigid rotation is a cyclone, in which the inner parts take less
time to complete a revolution than the outer parts. In order to define
a measure of rotational motion general enough to include nonrigid
rotation, we define the angular momentum of a system by dividing
it up into small parts, and adding up all the angular momenta of
the small parts, which we think of as tiny particles. We arbitrarily
choose some point in space, the axis, and we say that anything
that changes its direction relative to that point possesses angular
momentum. The angular momentum of a single particle is

L = mv⊥r ,

where v⊥ is the component of its velocity perpendicular to the line
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joining it to the axis, and r is its distance from the axis. Positive and
negative signs of angular momentum are used to indicate clockwise
and counterclockwise rotation.

The choice of axis theorem states that any axis may be used for
defining angular momentum. If a system’s angular momentum is
constant for one choice of axis, then it is also constant for any other
choice of axis.

The spin theorem states that an object’s angular momentum
with respect to some outside axis A can be found by adding up two
parts:

(1) The first part is the object’s angular momentum found by
using its own center of mass as the axis, i.e., the angular momentum
the object has because it is spinning.

(2) The other part equals the angular momentum that the ob-
ject would have with respect to the axis A if it had all its mass
concentrated at and moving with its center of mass.

Torque is the rate of change of angular momentum. The torque
a force can produce is a measure of its ability to twist on an object.
The relationship between force and torque is

|τ | = r|F⊥| ,

where r is the distance from the axis to the point where the force is
applied, and F⊥ is the component of the force perpendicular to the
line connecting the axis to the point of application. Statics problems
can be solved by setting the total force and total torque on an object
equal to zero and solving for the unknowns.
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 You are trying to loosen a stuck bolt on your RV using a big
wrench that is 50 cm long. If you hang from the wrench, and your
mass is 55 kg, what is the maximum torque you can exert on the
bolt?

√

2 A physical therapist wants her patient to rehabilitate his in-
jured elbow by laying his arm flat on a table, and then lifting a 2.1
kg mass by bending his elbow. In this situation, the weight is 33
cm from his elbow. He calls her back, complaining that it hurts him
to grasp the weight. He asks if he can strap a bigger weight onto
his arm, only 17 cm from his elbow. How much mass should she
tell him to use so that he will be exerting the same torque? (He is
raising his forearm itself, as well as the weight.)

√

3 An object thrown straight up in the air is momentarily at rest
when it reaches the top of its motion. Does that mean that it is in
equilibrium at that point? Explain.

4 An object is observed to have constant angular momentum.
Can you conclude that no torques are acting on it? Explain. [Based
on a problem by Serway and Faughn.]
5 A person of weight W stands on the ball of one foot. Find
the tension in the calf muscle and the force exerted by the shinbones
on the bones of the foot, in terms of W , a, and b. For simplicity,
assume that all the forces are at 90-degree angles to the foot, i.e.,
neglect the angle between the foot and the floor.

6 Two objects have the same momentum vector. Assume that
they are not spinning; they only have angular momentum due to
their motion through space. Can you conclude that their angular
momenta are the same? Explain. [Based on a problem by Serway
and Faughn.]
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Problem 10.

Problems 8 and 9.

Problem 7.

7 The sun turns on its axis once every 26.0 days. Its mass is
2.0 × 1030 kg and its radius is 7.0 × 108 m. Assume it is a rigid
sphere of uniform density.
(a) What is the sun’s angular momentum?

√

In a few billion years, astrophysicists predict that the sun will use
up all its sources of nuclear energy, and will collapse into a ball of
exotic, dense matter known as a white dwarf. Assume that its radius
becomes 5.8 × 106 m (similar to the size of the Earth.) Assume it
does not lose any mass between now and then. (Don’t be fooled by
the photo, which makes it look like nearly all of the star was thrown
off by the explosion. The visually prominent gas cloud is actually
thinner than the best laboratory vacuum every produced on earth.
Certainly a little bit of mass is actually lost, but it is not at all
unreasonable to make an approximation of zero loss of mass as we
are doing.)
(b) What will its angular momentum be?
(c) How long will it take to turn once on its axis?

√

8 A uniform ladder of mass m and length L leans against a
smooth wall, making an angle q with respect to the ground. The dirt
exerts a normal force and a frictional force on the ladder, producing
a force vector with magnitude F1 at an angle φ with respect to the
ground. Since the wall is smooth, it exerts only a normal force on
the ladder; let its magnitude be F2.
(a) Explain why φ must be greater than θ. No math is needed.
(b) Choose any numerical values you like for m and L, and show
that the ladder can be in equilibrium (zero torque and zero total
force vector) for θ = 45.00 ◦ and φ = 63.43 ◦.

9 Continuing the previous problem, find an equation for φ in
terms of θ, and show that m and L do not enter into the equation.
Do not assume any numerical values for any of the variables. You
will need the trig identity sin(a − b) = sin a cos b − sin b cos a. (As
a numerical check on your result, you may wish to check that the
angles given in part b of the previous problem satisfy your equation.)

?

10 (a) Find the minimum horizontal force which, applied at
the axle, will pull a wheel over a step. Invent algebra symbols for
whatever quantities you find to be relevant, and give your answer
in symbolic form. [Hints: There are four forces on the wheel at
first, but only three when it lifts off. Normal forces are always
perpendicular to the surface of contact. Note that the corner of the
step cannot be perfectly sharp, so the surface of contact for this
force really coincides with the surface of the wheel.]
(b) Under what circumstances does your result become infinite?
Give a physical interpretation.
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Problem 16.

Problem 17.

11 A yo-yo of total mass m consists of two solid cylinders
of radius R, connected by a small spindle of negligible mass and
radius r. The top of the string is held motionless while the string
unrolls from the spindle. Show that the acceleration of the yo-yo
is g/(1 + R2/2r2). [Hint: The acceleration and the tension in the
string are unknown. Use τ = ∆L/∆t and F = ma to determine
these two unknowns.] ?

12 A ball is connected by a string to a vertical post. The ball is
set in horizontal motion so that it starts winding the string around
the post. Assume that the motion is confined to a horizontal plane,
i.e., ignore gravity. Michelle and Astrid are trying to predict the
final velocity of the ball when it reaches the post. Michelle says
that according to conservation of angular momentum, the ball has
to speed up as it approaches the post. Astrid says that according to
conservation of energy, the ball has to keep a constant speed. Who
is right? [Hint: How is this different from the case where you whirl
a rock in a circle on a string and gradually pull in the string?]

13 In the 1950’s, serious articles began appearing in magazines
like Life predicting that world domination would be achieved by the
nation that could put nuclear bombs in orbiting space stations, from
which they could be dropped at will. In fact it can be quite difficult
to get an orbiting object to come down. Let the object have energy
E = KE +PE and angular momentum L. Assume that the energy
is negative, i.e., the object is moving at less than escape velocity.
Show that it can never reach a radius less than

rmin =
GMm

2E

(
−1 +

√
1 +

2EL2

G2M2m3

)
.

[Note that both factors are negative, giving a positive result.]

14 [Problem 14 has been deleted.]

15 [Problem 15 has been deleted.] ?

16 Two bars of length L are connected with a hinge and placed
on a frictionless cylinder of radius r. (a) Show that the angle θ shown
in the figure is related to the unitless ratio r/L by the equation

r

L
=

cos2 θ

2 tan θ
.

(b) Discuss the physical behavior of this equation for very large and
very small values of r/L. ?

17 You wish to determine the mass of a ship in a bottle without
taking it out. Show that this can be done with the setup shown in
the figure, with a scale supporting the bottle at one end, provided
that it is possible to take readings with the ship slid to two different
locations.
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Problem 20.

Problem 23.

18 Two atoms will interact via electrical forces between their
protons and electrons. One fairly good approximation to the poten-
tial energy is the Lennard-Jones potential,

PE(r) = k

[(a
r

)12
− 2

(a
r

)6
]

,

where r is the center-to-center distance between the atoms.

Show that (a) there is an equilibrium point at r = a, (b) the equi-
librium is stable, and (c) the energy required to bring the atoms
from their equilibrium separation to infinity is k. [Hints: The first
two parts can be done more easily by setting a = 1, since the value
of a only changes the distance scale. One way to do part b is by
graphing.]

∫
19 Suppose that we lived in a universe in which Newton’s law
of gravity gave forces proportional to r−7 rather than r−2. Which,
if any, of Kepler’s laws would still be true? Which would be com-
pletely false? Which would be different, but in a way that could be
calculated with straightforward algebra?
20 The figure shows scale drawing of a pair of pliers being
used to crack a nut, with an appropriately reduced centimeter grid.
Warning: do not attempt this at home; it is bad manners. If the
force required to crack the nut is 300 N, estimate the force required
of the person’s hand. . Solution, p. 170

21 Show that a sphere of radius R that is rolling without slipping
has angular momentum and momentum in the ratio L/p = (2/5)R.

22 Suppose a bowling ball is initially thrown so that it has no
angular momentum at all, i.e., it is initially just sliding down the
lane. Eventually kinetic friction will get it spinning fast enough so
that it is rolling without slipping. Show that the final velocity of the
ball equals 5/7 of its initial velocity. [Hint: You’ll need the result of
problem 21.]

23 The rod in the figure is supported by the finger and the
string.
(a) Find the tension, T , in the string, and the force, F , from the
finger, in terms of m, b,L, and g.

√

(b) Comment on the cases b = L and b = L/2.
(c) Are any values of b unphysical?

24 Two horizontal tree branches on the same tree have equal
diameters, but one branch is twice as long as the other. Give a
quantitative comparison of the torques where the branches join the
trunk. [Thanks to Bong Kang.]

25 (a) Alice says Cathy’s body has zero momentum, but Bob
says Cathy’s momentum is nonzero. Nobody is lying or making a
mistake. How is this possible? Give a concrete example.
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Problem 27.

(b) Alice and Bob agree that Dong’s body has nonzero momentum,
but disagree about Dong’s angular momentum, which Alice says is
zero, and Bob says is nonzero. Explain.

26 Penguins are playful animals. Tux the Penguin invents a new
game using a natural circular depression in the ice. He waddles at
top speed toward the crater, aiming off to the side, and then hops
into the air and lands on his belly just inside its lip. He then belly-
surfs, moving in a circle around the rim. The ice is frictionless, so
his speed is constant. Is Tux’s angular momentum zero, or nonzero?
What about the total torque acting on him? Take the center of the
crater to be the axis. Explain your answers.
27 Make a rough estimate of the mechanical advantage of the
lever shown in the figure. In other words, for a given amount of
force applied on the handle, how many times greater is the resulting
force on the cork?

28 In example 8 on page 119, prove that if the rod is sufficiently
thin, it can be toppled without scraping on the floor.

. Solution, p. 170 ?

29 A massless rod of length ` has weights, each of mass m, at-
tached to its ends. The rod is initially put in a horizontal position,
and laid on an off-center fulcrum located at a distance b from the
rod’s center. The rod will topple. (a) Calculate the total gravita-
tional torque on the rod directly, by adding the two torques. (b)
Verify that this gives the same result as would have been obtained
by taking the entire gravitational force as acting at the center of
mass.

30 A skilled motorcyclist can ride up a ramp, fly through the
air, and land on another ramp. Why would it be useful for the rider
to speed up or slow down the back wheel while in the air?
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Chapter A

Thermodynamics

This chapter is optional, and should probably be omitted from a two-
semester survey course. It can be covered at any time after chapter
3.

In a developing country like China, a refrigerator is the mark of
a family that has arrived in the middle class, and a car is the ulti-
mate symbol of wealth. Both of these are heat engines: devices for
converting between heat and other forms of energy. Unfortunately
for the Chinese, neither is a very efficient device. Burning fossil fuels
has made China’s big cities the most polluted on the planet, and
the country’s total energy supply isn’t sufficient to support Amer-
ican levels of energy consumption by more than a small fraction
of China’s population. Could we somehow manipulate energy in a
more efficient way?

Conservation of energy is a statement that the total amount of
energy is constant at all times, which encourages us to believe that
any energy transformation can be undone — indeed, the laws of
physics you’ve learned so far don’t even distinguish the past from
the future. If you get in a car and drive around the block, the
net effect is to consume some of the energy you paid for at the
gas station, using it to heat the neighborhood. There would not
seem to be any fundamental physical principle to prevent you from
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recapturing all that heat and using it again the next time you want
to go for a drive. More modestly, why don’t engineers design a car
engine so that it recaptures the heat energy that would otherwise
be wasted via the radiator and the exhaust?

Hard experience, however, has shown that designers of more and
more efficient engines run into a brick wall at a certain point. The
generators that the electric company uses to produce energy at an
oil-fueled plant are indeed much more efficient than a car engine, but
even if one is willing to accept a device that is very large, expensive,
and complex, it turns out to be impossible to make a perfectly effi-
cient heat engine — not just impossible with present-day technology,
but impossible due to a set of fundamental physical principles known
as the science of thermodynamics. And thermodynamics isn’t just a
pesky set of constraints on heat engines. Without thermodynamics,
there is no way to explain the direction of time’s arrow — why we
can remember the past but not the future, and why it’s easier to
break Humpty Dumpty than to put him back together again.

A.1 Pressure and Temperature
When we heat an object, we speed up the mind-bogglingly complex
random motion of its molecules. One method for taming complexity
is the conservation laws, since they tell us that certain things must
remain constant regardless of what process is going on. Indeed,
the law of conservation of energy is also known as the first law of
thermodynamics.

But as alluded to in the introduction to this chapter, conserva-
tion of energy by itself is not powerful enough to explain certain
empirical facts about heat. A second way to sidestep the complex-
ity of heat is to ignore heat’s atomic nature and concentrate on
quantities like temperature and pressure that tell us about a sys-
tem’s properties as a whole. This approach is called macroscopic in
contrast to the microscopic method of attack. Pressure and temper-
ature were fairly well understood in the age of Newton and Galileo,
hundreds of years before there was any firm evidence that atoms
and molecules even existed.

Unlike the conserved quantities such as mass, energy, momen-
tum, and angular momentum, neither pressure nor temperature is
additive. Two cups of coffee have twice the heat energy of a single
cup, but they do not have twice the temperature. Likewise, the
painful pressure on your eardrums at the bottom of a pool is not
affected if you insert or remove a partition between the two halves
of the pool.

Pressure

We restrict ourselves to a discussion of pressure in fluids at rest
and in equilibrium. In physics, the term “fluid” is used to mean
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a / A simple pressure gauge
consists of a cylinder open at one
end, with a piston and a spring
inside. The depth to which the
spring is depressed is a measure
of the pressure. To determine the
absolute pressure, the air needs
to be pumped out of the interior of
the gauge, so that there is no air
pressure acting outward on the
piston. In many practical gauges,
the back of the piston is open to
the atmosphere, so the pressure
the gauge registers equals the
pressure of the fluid minus the
pressure of the atmosphere.

either a gas or a liquid. The important feature of a fluid can be
demonstrated by comparing with a cube of jello on a plate. The
jello is a solid. If you shake the plate from side to side, the jello will
respond by shearing, i.e., by slanting its sides, but it will tend to
spring back into its original shape. A solid can sustain shear forces,
but a fluid cannot. A fluid does not resist a change in shape unless
it involves a change in volume.

If you’re at the bottom of a pool, you can’t relieve the pain in
your ears by turning your head. The water’s force on your eardrum
is always the same, and is always perpendicular to the surface where
the eardrum contacts the water. If your ear is on the east side of
your head, the water’s force is to the west. If you keep your head
in the same spot while turning around so your ear is on the north,
the force will still be the same in magnitude, and it will change
its direction so that it is still perpendicular to the eardrum: south.
This shows that pressure has no direction in space, i.e., it is a scalar.
The direction of the force is determined by the orientation of the
surface on which the pressure acts, not by the pressure itself. A
fluid flowing over a surface can also exert frictional forces, which
are parallel to the surface, but the present discussion is restricted
to fluids at rest.

Experiments also show that a fluid’s force on a surface is pro-
portional to the surface area. The vast force of the water behind
a dam, for example, in proportion to the dam’s great surface area.
(The bottom of the dam experiences a higher proportion of its force.)

Based on these experimental results, it appears that the useful
way to define pressure is as follows. The pressure of a fluid at a
given point is defined as F⊥/A, where A is the area of a small surface
inserted in the fluid at that point, and F⊥ is the component of the
fluid’s force on the surface which is perpendicular to the surface.

This is essentially how a pressure gauge works. The reason that
the surface must be small is so that there will not be any significant
different in pressure between one part of it and another part. The
SI units of pressure are evidently N/m2, and this combination can
be abbreviated as the pascal, 1 Pa=1 N/m2. The pascal turns out
to be an inconveniently small unit, so car tires, for example, have
recommended pressures imprinted on them in units of kilopascals.

Pressure in U.S. units example 1
In U.S. units, the unit of force is the pound, and the unit of distance
is the inch. The unit of pressure is therefore pounds per square
inch, or p.s.i. (Note that the pound is not a unit of mass.)

Section A.1 Pressure and Temperature 145



Atmospheric pressure in U.S. and metric units example 2
. A figure that many people in the U.S. remember is that atmo-
spheric pressure is about 15 pounds per square inch. What is
this in metric units?

.

15 lb
1 in2 =

68 N
(0.0254 m)2 = 1.0× 105 N/m2

= 100 kPa

Only pressure differences are normally significant.

If you spend enough time on an airplane, the pain in your ears
subsides. This is because your body has gradually been able to ad-
mit more air into the cavity behind the eardrum. Once the pressure
inside is equalized with the pressure outside, the inward and out-
ward forces on your eardrums cancel out, and there is no physical
sensation to tell you that anything unusual is going on. For this
reason, it is normally only pressure differences that have any phys-
ical significance. Thus deep-sea fish are perfectly healthy in their
habitat because their bodies have enough internal pressure to cancel
the pressure from the water in which they live; if they are caught in
a net and brought to the surface rapidly, they explode because their
internal pressure is so much greater than the low pressure outside.

Getting killed by a pool pump example 3
. My house has a pool, which I maintain myself. A pool always
needs to have its water circulated through a filter for several hours
a day in order to keep it clean. The filter is a large barrel with a
strong clamp that holds the top and bottom halves together. My
filter has a prominent warning label that warns me not to try to
open the clamps while the pump is on, and it shows a cartoon
of a person being struck by the top half of the pump. The cross-
sectional area of the filter barrel is 0.25 m2. Like most pressure
gauges, the one on my pool pump actually reads the difference in
pressure between the pressure inside the pump and atmospheric
pressure. The gauge reads 90 kPa. What is the force that is
trying to pop open the filter?

. If the gauge told us the absolute pressure of the water inside,
we’d have to find the force of the water pushing outward and the
force of the air pushing inward, and subtract in order to find the
total force. Since air surrounds us all the time, we would have to
do such a subtraction every time we wanted to calculate anything
useful based on the gauge’s reading. The manufacturers of the
gauge decided to save us from all this work by making it read the
difference in pressure between inside and outside, so all we have
to do is multiply the gauge reading by the cross-sectional area of
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b / This doesn’t happen. If
pressure could vary horizontally
in equilibrium, the cube of water
would accelerate horizontally.
This is a contradiction, since
we assumed the fluid was in
equilibrium.

c / This does happen. The
sum of the forces from the
surrounding parts of the fluid is
upward, canceling the downward
force of gravity.

d / The pressure is the same
at all the points marked with dots.

the filter:

F = PA

= (90× 103 N/m2)(0.25 m2)
= 22000 N

That’s a lot of force!

The word “suction” and other related words contain a hidden
misunderstanding related to this point about pressure differences.
When you suck water up through a straw, there is nothing in your
mouth that is attracting the water upward. The force that lifts the
water is from the pressure of the water in the cup. By creating a
partial vacuum in your mouth, you decreased the air’s downward
force on the water so that it no longer exactly canceled the upward
force.

Variation of pressure with depth

The pressure within a fluid in equilibrium can only depend on
depth, due to gravity. If the pressure could vary from side to side,
then a piece of the fluid in between, b, would be subject to unequal
forces from the parts of the fluid on its two sides. But fluids do not
exhibit shear forces, so there would be no other force that could keep
this piece of fluid from accelerating. This contradicts the assumption
that the fluid was in equilibrium.

self-check A
How does this proof fail for solids? . Answer, p. 166

To find the variation with depth, we consider the vertical forces
acting on a tiny, imaginary cube of the fluid having height ∆y and
areas dA on the top and bottom. Using positive numbers for upward
forces, we have

Pbottom∆A− Ptop∆A− Fg = 0 .

The weight of the fluid is Fg = mg = ρV g = ρ∆A∆y g, where ρ is
the density of the fluid, so the difference in pressure is

∆P = −ρg∆y . [variation in pressure with depth for
a fluid of density ρ in equilibrium;

positive y is up.]

The factor of ρ explains why we notice the difference in pressure
when diving 3 m down in a pool, but not when going down 3 m
of stairs. Note also that the equation only tells us the difference in
pressure, not the absolute pressure. The pressure at the surface of
a swimming pool equals the atmospheric pressure, not zero, even
though the depth is zero at the surface. The blood in your body
does not even have an upper surface.
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e / We have to wait for the
thermometer to equilibrate its
temperature with the temperature
of Irene’s armpit.

Pressure of lava underneath a volcano example 4
. A volcano has just finished erupting, and a pool of molten lava
is lying at rest in the crater. The lava has come up through an
opening inside the volcano that connects to the earth’s molten
mantle. The density of the lava is 4.1 g/cm3. What is the pressure
in the lava underneath the base of the volcano, 3000 m below the
surface of the pool?

.

∆P = ρg∆y

= (4.1 g/cm3)(9.8 m/s2)(3000 m)

= (4.1× 106 g/m3)(9.8 m/s2)(3000 m)

= (4.1× 103 kg/m3)(9.8 m/s2)(3000 m)

= 1.2× 108 N/m2

= 1.2× 108 Pa

This is the difference between the pressure we want to find and
atmospheric pressure at the surface. The latter, however, is tiny
compared to the ∆P we just calculated, so what we’ve found is
essentially the pressure, P.

Atmospheric pressure example 5
This example uses calculus.

Gases, unlike liquids, are quite compressible, and at a given tem-
perature, the density of a gas is approximately proportional to
the pressure. The proportionality constant is discussed in section
A.2, but for now let’s just call it k , ρ = kP. Using this fact, we can
find the variation of atmospheric pressure with altitude, assuming
constant temperature:

dP = −ρg dy
dP = −kPg dy
dP
P

= −kg dy

ln P = −kgy + constant [integrating both sides]

P = (constant)e−kgy [exponentiating both sides]

Pressure falls off exponentially with height. There is no sharp
cutoff to the atmosphere, but the exponential gets extremely small
by the time you’re ten or a hundred miles up.

Temperature

Thermal equilibrium

We use the term temperature casually, but what is it exactly?
Roughly speaking, temperature is a measure of how concentrated
the heat energy is in an object. A large, massive object with very
little heat energy in it has a low temperature.
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f / Thermal equilibrium can
be prevented. Otters have a coat
of fur that traps air bubbles for in-
sulation. If a swimming otter was
in thermal equilibrium with cold
water, it would be dead. Heat is
still conducted from the otter’s
body to the water, but much
more slowly than it would be in a
warm-blooded animal that didn’t
have this special adaptation.

g / A hot air balloon is inflated.
Because of thermal expansion,
the hot air is less dense than
the surrounding cold air, and
therefore floats as the cold air
drops underneath it and pushes it
up out of the way.

But physics deals with operational definitions, i.e., definitions of
how to measure the thing in question. How do we measure temper-
ature? One common feature of all temperature-measuring devices
is that they must be left for a while in contact with the thing whose
temperature is being measured. When you take your temperature
with a fever thermometer, you wait for the mercury inside to come
up to the same temperature as your body. The thermometer ac-
tually tells you the temperature of its own working fluid (in this
case the mercury). In general, the idea of temperature depends on
the concept of thermal equilibrium. When you mix cold eggs from
the refrigerator with flour that has been at room temperature, they
rapidly reach a compromise temperature. What determines this
compromise temperature is conservation of energy, and the amount
of energy required to heat or cool each substance by one degree.
But without even having constructed a temperature scale, we can
see that the important point is the phenomenon of thermal equi-
librium itself: two objects left in contact will approach the same
temperature. We also assume that if object A is at the same tem-
perature as object B, and B is at the same temperature as C, then
A is at the same temperature as C. This statement is sometimes
known as the zeroth law of thermodynamics, so called because after
the first, second, and third laws had been developed, it was realized
that there was another law that was even more fundamental.

Thermal expansion

The familiar mercury thermometer operates on the principle that
the mercury, its working fluid, expands when heated and contracts
when cooled. In general, all substances expand and contract with
changes in temperature. The zeroth law of thermodynamics guar-
antees that we can construct a comparative scale of temperatures
that is independent of what type of thermometer we use. If a ther-
mometer gives a certain reading when it’s in thermal equilibrium
with object A, and also gives the same reading for object B, then
A and B must be the same temperature, regardless of the details of
how the thermometers works.

What about constructing a temperature scale in which every
degree represents an equal step in temperature? The Celsius scale
has 0 as the freezing point of water and 100 as its boiling point. The
hidden assumption behind all this is that since two points define a
line, any two thermometers that agree at two points must agree at
all other points. In reality if we calibrate a mercury thermometer
and an alcohol thermometer in this way, we will find that a graph
of one thermometer’s reading versus the other is not a perfectly
straight y = x line. The subtle inconsistency becomes a drastic one
when we try to extend the temperature scale through the points
where mercury and alcohol boil or freeze. Gases, however, are much
more consistent among themselves in their thermal expansion than
solids or liquids, and the noble gases like helium and neon are more
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h / A simplified version of an
ideal gas thermometer. The
whole instrument is allowed to
come into thermal equilibrium
with the substance whose tem-
perature is to be measured, and
the mouth of the cylinder is left
open to standard pressure. The
volume of the noble gas gives an
indication of temperature.

i / The volume of 1 kg of neon
gas as a function of temperature
(at standard pressure). Although
neon would actually condense
into a liquid at some point, extrap-
olating the graph to zero volume
gives the same temperature as
for any other gas: absolute zero.

consistent with each other than gases in general. Continuing to
search for consistency, we find that noble gases are more consistent
with each other when their pressure is very low.

As an idealization, we imagine a gas in which the atoms interact
only with the sides of the container, not with each other. Such a
gas is perfectly nonreactive (as the noble gases very nearly are), and
never condenses to a liquid (as the noble gases do only at extremely
low temperatures). Its atoms take up a negligible fraction of the
available volume. Any gas can be made to behave very much like
this if the pressure is extremely low, so that the atoms hardly ever
encounter each other. Such a gas is called an ideal gas, and we define
the Celsius scale in terms of the volume of the gas in a thermometer
whose working substance is an ideal gas maintained at a fixed (very
low) pressure, and which is calibrated at 0 and 100 degrees according
to the melting and boiling points of water. The Celsius scale is not
just a comparative scale but an additive one as well: every step in
temperature is equal, and it makes sense to say that the difference
in temperature between 18 and 28 ◦C is the same as the difference
between 48 and 58.

Absolute zero and the Kelvin scale

We find that if we extrapolate a graph of volume versus temper-
ature, the volume becomes zero at nearly the same temperature for
all gases: -273 ◦C. Real gases will all condense into liquids at some
temperature above this, but an ideal gas would achieve zero vol-
ume at this temperature, known as absolute zero. The most useful
temperature scale in scientific work is one whose zero is defined by
absolute zero, rather than by some arbitrary standard like the melt-
ing point of water. The ideal temperature scale for scientific work,
called the Kelvin scale, is the same as the Celsius scale, but shifted
by 273 degrees to make its zero coincide with absolute zero. Scien-
tists use the Celsius scale only for comparisons or when a change
in temperature is all that is required for a calculation. Only on the
Kelvin scale does it make sense to discuss ratios of temperatures,
e.g., to say that one temperature is twice as hot as another.

Which temperature scale to use example 6
. You open an astronomy book and encounter the equation

(light emitted) = (constant)× T 4

for the light emitted by a star as a function of its surface tempera-
ture. What temperature scale is implied?

. The equation tells us that doubling the temperature results in
the emission of 16 times as much light. Such a ratio only makes
sense if the Kelvin scale is used.

150 Chapter A Thermodynamics



A.2 Microscopic Description of an Ideal Gas
Evidence for the kinetic theory

Why does matter have the thermal properties it does? The basic
answer must come from the fact that matter is made of atoms. How,
then, do the atoms give rise to the bulk properties we observe?
Gases, whose thermal properties are so simple, offer the best chance
for us to construct a simple connection between the microscopic and
macroscopic worlds.

A crucial observation is that although solids and liquids are
nearly incompressible, gases can be compressed, as when we in-
crease the amount of air in a car’s tire while hardly increasing its
volume at all. This makes us suspect that the atoms in a solid are
packed shoulder to shoulder, while a gas is mostly vacuum, with
large spaces between molecules. Most liquids and solids have den-
sities about 1000 times greater than most gases, so evidently each
molecule in a gas is separated from its nearest neighbors by a space
something like 10 times the size of the molecules themselves.

If gas molecules have nothing but empty space between them,
why don’t the molecules in the room around you just fall to the
floor? The only possible answer is that they are in rapid motion,
continually rebounding from the walls, floor and ceiling. In chapter
2, we have already seen some of the evidence for the kinetic theory
of heat, which states that heat is the kinetic energy of randomly
moving molecules. This theory was proposed by Daniel Bernoulli
in 1738, and met with considerable opposition, because there was
no precedent for this kind of perpetual motion. No rubber ball,
however elastic, rebounds from a wall with exactly as much energy
as it originally had, nor do we ever observe a collision between balls
in which none of the kinetic energy at all is converted to heat and
sound. The analogy is a false one, however. A rubber ball consists
of atoms, and when it is heated in a collision, the heat is a form
of motion of those atoms. An individual molecule, however, cannot
possess heat. Likewise sound is a form of bulk motion of molecules,
so colliding molecules in a gas cannot convert their kinetic energy to
sound. Molecules can indeed induce vibrations such as sound waves
when they strike the walls of a container, but the vibrations of the
walls are just as likely to impart energy to a gas molecule as to
take energy from it. Indeed, this kind of exchange of energy is the
mechanism by which the temperatures of the gas and its container
become equilibrated.

Pressure, volume, and temperature

A gas exerts pressure on the walls of its container, and in the
kinetic theory we interpret this apparently constant pressure as the
averaged-out result of vast numbers of collisions occurring every
second between the gas molecules and the walls. The empirical
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facts about gases can be summarized by the relation

PV ∝ nT , [ideal gas]

which really only holds exactly for an ideal gas. Here n is the number
of molecules in the sample of gas.

Volume related to temperature example 7
The proportionality of volume to temperature at fixed pressure
was the basis for our definition of temperature.

Pressure related to temperature example 8
Pressure is proportional to temperature when volume is held con-
stant. An example is the increase in pressure in a car’s tires when
the car has been driven on the freeway for a while and the tires
and air have become hot.

We now connect these empirical facts to the kinetic theory of
a classical ideal gas. For simplicity, we assume that the gas is
monoatomic (i.e., each molecule has only one atom), and that it
is confined to a cubical box of volume V , with L being the length
of each edge and A the area of any wall. An atom whose velocity
has an x component vx will collide regularly with the left-hand wall,
traveling a distance 2L parallel to the x axis between collisions with
that wall. The time between collisions is ∆t = 2L/vx, and in each
collision the x component of the atom’s momentum is reversed from
−mvx to mvx. The total force on the wall is

F =
∆px,1

∆t1
+

∆px,2

∆t2
+ . . . [monoatomic ideal gas] ,

where the indices 1, 2, . . . refer to the individual atoms. Substituting
∆px,i = 2mvx,i and ∆ti = 2L/vx,i, we have

F =
mv2

x,1

L
+
mv2

x,2

L
+ . . . [monoatomic ideal gas] .

The quantity mv2
x,i is twice the contribution to the kinetic energy

from the part of the atom’s center of mass motion that is parallel to
the x axis. Since we’re assuming a monoatomic gas, center of mass
motion is the only type of motion that gives rise to kinetic energy.
(A more complex molecule could rotate and vibrate as well.) If the
quantity inside the sum included the y and z components, it would
be twice the total kinetic energy of all the molecules. By symmetry,
it must therefore equal 2/3 of the total kinetic energy, so

F =
2KEtotal

3L
[monoatomic ideal gas] .

Dividing by A and using AL = V , we have

P =
2KEtotal

3V
[monoatomic ideal gas] .
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This can be connected to the empirical relation PV ∝ nT if we
multiply by V on both sides and rewrite KEtotal as nKEav, where
KEav is the average kinetic energy per molecule:

PV =
2
3
nKEav [monoatomic ideal gas] .

For the first time we have an interpretation for the temperature
based on a microscopic description of matter: in a monoatomic ideal
gas, the temperature is a measure of the average kinetic energy per
molecule. The proportionality between the two is KEav = (3/2)kT ,
where the constant of proportionality k, known as Boltzmann’s con-
stant, has a numerical value of 1.38× 10−23 J/K. In terms of Boltz-
mann’s constant, the relationship among the bulk quantities for an
ideal gas becomes

PV = nkT , [ideal gas]

which is known as the ideal gas law. Although I won’t prove it here,
this equation applies to all ideal gases, even though the derivation
assumed a monoatomic ideal gas in a cubical box. (You may have
seen it written elsewhere as PV = NRT , where N = n/NA is the
number of moles of atoms, R = kNA, and NA = 6.0 × 1023, called
Avogadro’s number, is essentially the number of hydrogen atoms in
1 g of hydrogen.)

Pressure in a car tire example 9
. After driving on the freeway for a while, the air in your car’s
tires heats up from 10 ◦C to 35 ◦C. How much does the pressure
increase?

. The tires may expand a little, but we assume this effect is small,
so the volume is nearly constant. From the ideal gas law, the
ratio of the pressures is the same as the ratio of the absolute
temperatures,

P2/P1 = T2/T1

= (308 K)/(283 K)
= 1.09 ,

or a 9% increase.

Earth’s senescence example 10
Microbes were the only life on Earth up until the relatively re-
cent advent of multicellular life, and are arguably still the domi-
nant form of life on our planet. Furthermore, the sun has been
gradually heating up ever since it first formed, and this continuing
process will soon (“soon” in the sense of geological time) elimi-
nate multicellular life again. Heat-induced decreases in the atmo-
sphere’s CO2 content will kill off all complex plants within about
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j / A space suit (example 11).

500 million years, and although some animals may be able to live
by eating algae, it will only be another few hundred million years
at most until the planet is completely heat-sterilized.

Why is the sun getting brighter? The only thing that keeps a star
like our sun from collapsing due to its own gravity is the pressure
of its gases. The sun’s energy comes from nuclear reactions at
its core, and the net result of these reactions is to fuse hydrogen
atoms into helium atoms. It takes four hydrogens to make one
helium, so the number of atoms in the sun is continuously de-
creasing. Since PV = nkT , this causes a decrease in pressure,
which makes the core contract. As the core contracts, collisions
between hydrogen atoms become more frequent, and the rate of
fusion reactions increases.
A piston, a refrigerator, and a space suit example 11
Both sides of the equation PV = nkT have units of energy. Sup-
pose the pressure in a cylinder of gas pushes a piston out, as in
the power stroke of an automobile engine. Let the cross-sectional
area of the piston and cylinder be A, and let the piston travel a
small distance ∆x . Then the gas’s force on the piston F = PA
does an amount of mechanical work W = F∆x = PA∆x = P∆V ,
where ∆V is the change in volume. This energy has to come
from somewhere; it comes from cooling the gas. In a car, what
this means is that we’re harvesting the energy released by burn-
ing the gasoline.

In a refrigerator, we use the same process to cool the gas, which
then cools the food.

In a space suit, the quantity P∆V represents the work the astro-
naut has to do because bending her limbs changes the volume
of the suit. The suit inflates under pressure like a balloon, and
doesn’t want to bend. This makes it very tiring to work for any
significant period of time.

154 Chapter A Thermodynamics



k / The temperature differ-
ence between the hot and cold
parts of the air can be used to
extract mechanical energy, for
example with a fan blade that
spins because of the rising hot air
currents.

l / If the temperature of the
air is first allowed to become
uniform, then no mechanical
energy can be extracted. The
same amount of heat energy
is present, but it is no longer
accessible for doing mechanical
work.

A.3 Entropy
Efficiency and grades of energy

Some forms of energy are more convenient than others in certain
situations. You can’t run a spring-powered mechanical clock on a
battery, and you can’t run a battery-powered clock with mechanical
energy. However, there is no fundamental physical principle that
prevents you from converting 100% of the electrical energy in a
battery into mechanical energy or vice-versa. More efficient motors
and generators are being designed every year. In general, the laws
of physics permit perfectly efficient conversion within a broad class
of forms of energy.

Heat is different. Friction tends to convert other forms of energy
into heat even in the best lubricated machines. When we slide a
book on a table, friction brings it to a stop and converts all its kinetic
energy into heat, but we never observe the opposite process, in which
a book spontaneously converts heat energy into mechanical energy
and starts moving! Roughly speaking, heat is different because it is
disorganized. Scrambling an egg is easy. Unscrambling it is harder.

We summarize these observations by saying that heat is a lower
grade of energy than other forms such as mechanical energy.

Of course it is possible to convert heat into other forms of energy
such as mechanical energy, and that is what a car engine does with
the heat created by exploding the air-gasoline mixture. But a car
engine is a tremendously inefficient device, and a great deal of the
heat is simply wasted through the radiator and the exhaust. Engi-
neers have never succeeded in creating a perfectly efficient device for
converting heat energy into mechanical energy, and we now know
that this is because of a deeper physical principle that is far more
basic than the design of an engine.

Heat engines

Heat may be more useful in some forms than in other, i.e., there
are different grades of heat energy. In figure k, the difference in
temperature can be used to extract mechanical work with a fan
blade. This principle is used in power plants, where steam is heated
by burning oil or by nuclear reactions, and then allowed to expand
through a turbine which has cooler steam on the other side. On
a smaller scale, there is a Christmas toy that consists of a small
propeller spun by the hot air rising from a set of candles, very much
like the setup shown in the figure.

In figure l, however, no mechanical work can be extracted be-
cause there is no difference in temperature. Although the air in l
has the same total amount of energy as the air in k, the heat in l
is a lower grade of energy, since none of it is accessible for doing
mechanical work.
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m / The beginning of the first
expansion stroke, in which the
working gas is kept in thermal
equilibrium with the hot reservoir.

n / The beginning of the sec-
ond expansion stroke, in which
the working gas is thermally
insulated. The working gas cools
because it is doing work on the
piston and thus losing energy.

o / The beginning of the first
compression stroke. The working
gas begins the stroke at the same
temperature as the cold reservoir,
and remains in thermal contact
with it the whole time. The engine
does negative work.

p / The beginning of the sec-
ond compression stroke, in which
mechanical work is absorbed,
heating the working gas back up
to TH .

In general, we define a heat engine as any device that takes heat
from a reservoir of hot matter, extracts some of the heat energy to do
mechanical work, and expels a lesser amount of heat into a reservoir
of cold matter. The efficiency of a heat engine equals the amount of
useful work extracted, W , divided by the amount of energy we had
to pay for in order to heat the hot reservoir. This latter amount
of heat is the same as the amount of heat the engine extracts from
the high-temperature reservoir, QH . (The letter Q is the standard
notation for a transfer of heat.) By conservation of energy, we have
QH = W + QL, where QL is the amount of heat expelled into the
low-temperature reservoir, so the efficiency of a heat engine, W/QH ,
can be rewritten as

efficiency = 1− QL

QH
. [efficiency of any heat engine]

It turns out that there is a particular type of heat engine, the
Carnot engine, which, although not 100% efficient, is more efficient
than any other. The grade of heat energy in a system can thus be
unambiguously defined in terms of the amount of heat energy in it
that cannot be extracted, even by a Carnot engine.

How can we build the most efficient possible engine? Let’s start
with an unnecessarily inefficient engine like a car engine and see
how it could be improved. The radiator and exhaust expel hot
gases, which is a waste of heat energy. These gases are cooler than
the exploded air-gas mixture inside the cylinder, but hotter than
the air that surrounds the car. We could thus improve the engine’s
efficiency by adding an auxiliary heat engine to it, which would
operate with the first engine’s exhaust as its hot reservoir and the
air as its cold reservoir. In general, any heat engine that expels
heat at an intermediate temperature can be made more efficient by
changing it so that it expels heat only at the temperature of the
cold reservoir.

Similarly, any heat engine that absorbs some energy at an in-
termediate temperature can be made more efficient by adding an
auxiliary heat engine to it which will operate between the hot reser-
voir and this intermediate temperature.

Based on these arguments, we define a Carnot engine as a heat
engine that absorbs heat only from the hot reservoir and expels it
only into the cold reservoir. Figures m-p show a realization of a
Carnot engine using a piston in a cylinder filled with a monoatomic
ideal gas. This gas, known as the working fluid, is separate from,
but exchanges energy with, the hot and cold reservoirs. It turns out
that this particular Carnot engine has an efficiency given by

efficiency = 1− TL

TH
, [efficiency of a Carnot engine]

where TL is the temperature of the cold reservoir and TH is the
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q / Entropy can be understood
using the metaphor of a water
wheel. Letting the water levels
equalize is like letting the entropy
maximize. Taking water from the
high side and putting it into the
low side increases the entropy.
Water levels in this metaphor
correspond to temperatures in
the actual definition of entropy.

temperature of the hot reservoir. (A proof of this fact is given in
my book Simple Nature, which you can download for free.)

Even if you do not wish to dig into the details of the proof,
the basic reason for the temperature dependence is not so hard to
understand. Useful mechanical work is done on strokes m and n,
in which the gas expands. The motion of the piston is in the same
direction as the gas’s force on the piston, so positive work is done
on the piston. In strokes o and p, however, the gas does negative
work on the piston. We would like to avoid this negative work,
but we must design the engine to perform a complete cycle. Luckily
the pressures during the compression strokes are lower than the ones
during the expansion strokes, so the engine doesn’t undo all its work
with every cycle. The ratios of the pressures are in proportion to
the ratios of the temperatures, so if TL is 20% of TH , the engine is
80% efficient.

We have already proved that any engine that is not a Carnot
engine is less than optimally efficient, and it is also true that all
Carnot engines operating between a given pair of temperatures TH

and TL have the same efficiency. Thus a Carnot engine is the most
efficient possible heat engine.

Entropy

We would like to have some numerical way of measuring the
grade of energy in a system. We want this quantity, called entropy,
to have the following two properties:

(1) Entropy is additive. When we combine two systems and
consider them as one, the entropy of the combined system equals
the sum of the entropies of the two original systems. (Quantities
like mass and energy also have this property.)

(2) The entropy of a system is not changed by operating a Carnot
engine within it.

It turns out to be simpler and more useful to define changes
in entropy than absolute entropies. Suppose as an example that a
system contains some hot matter and some cold matter. It has a
relatively high grade of energy because a heat engine could be used
to extract mechanical work from it. But if we allow the hot and
cold parts to equilibrate at some lukewarm temperature, the grade
of energy has gotten worse. Thus putting heat into a hotter area
is more useful than putting it into a cold area. Motivated by these
considerations, we define a change in entropy as follows:

∆S =
Q

T
[change in entropy when adding

heat Q to matter at temperature T ;
∆S is negative if heat is taken out]

A system with a higher grade of energy has a lower entropy.
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Entropy is additive. example 12
Since changes in entropy are defined by an additive quantity (heat)
divided by a non-additive one (temperature), entropy is additive.

Entropy isn’t changed by a Carnot engine. example 13
The efficiency of a heat engine is defined by

efficiency = 1−QL/QH ,

and the efficiency of a Carnot engine is

efficiency = 1− TL/TH ,

so for a Carnot engine we have QL/QH = TL/TH , which can be
rewritten as QL/TL = QH/TH . The entropy lost by the hot reservoir
is therefore the same as the entropy gained by the cold one.

Entropy increases in heat conduction. example 14
When a hot object gives up energy to a cold one, conservation
of energy tells us that the amount of heat lost by the hot object
is the same as the amount of heat gained by the cold one. The
change in entropy is −Q/TH + Q/TL, which is positive because
TL < TH .

Entropy is increased by a non-Carnot engine. example 15
The efficiency of a non-Carnot engine is less than 1 - TL/TH ,
so QL/QH > TL/TH and QL/TL > QH/TH . This means that the
entropy increase in the cold reservoir is greater than the entropy
decrease in the hot reservoir.

A book sliding to a stop example 16
A book slides across a table and comes to a stop. Once it stops,
all its kinetic energy has been transformed into heat. As the book
and table heat up, their entropies both increase, so the total en-
tropy increases as well.

Examples 14-16 involved closed systems, and in all of them the
total entropy either increased or stayed the same. It never decreased.
Here are two examples of schemes for decreasing the entropy of a
closed system, with explanations of why they don’t work.

Using a refrigerator to decrease entropy? example 17
. A refrigerator takes heat from a cold area and dumps it into a
hot area. (1) Does this lead to a net decrease in the entropy of
a closed system? (2) Could you make a Carnot engine more ef-
ficient by running a refrigerator to cool its low-temperature reser-
voir and eject heat into its high-temperature reservoir?

. (1) No. The heat that comes off of the radiator coils on the
back of your kitchen fridge is a great deal more than the heat the
fridge removes from inside; the difference is what it costs to run
your fridge. The heat radiated from the coils is so much more
than the heat removed from the inside that the increase in the
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entropy of the air in the room is greater than the decrease of the
entropy inside the fridge. The most efficient refrigerator is actually
a Carnot engine running in reverse, which leads to neither an
increase nor a decrease in entropy.

(2) No. The most efficient refrigerator is a reversed Carnot en-
gine. You will not achieve anything by running one Carnot engine
in reverse and another forward. They will just cancel each other
out.

Maxwell’s daemon example 18
. Physicist James Clerk Maxwell imagined pair of neighboring
rooms, their air being initially in thermal equilibrium, having a par-
tition across the middle with a tiny door. A miniscule daemon is
posted at the door with a little ping-pong paddle, and his duty is to
try to build up faster-moving air molecules in room B and slower
ones in room A. For instance, when a fast molecule is headed
through the door, going from A to B, he lets it by, but when a
slower than average molecule tries the same thing, he hits it back
into room A. Would this decrease the total entropy of the pair of
rooms?

. No. The daemon needs to eat, and we can think of his body
as a little heat engine. His metabolism is less efficient than a
Carnot engine, so he ends up increasing the entropy rather than
decreasing it.

Observation such as these lead to the following hypothesis, known
as the second law of thermodynamics:

The entropy of a closed system always increases, or at best stays
the same: ∆S ≥ 0.

At present my arguments to support this statement may seem
less than convincing, since they have so much to do with obscure
facts about heat engines. A more satisfying and fundamental expla-
nation for the continual increase in entropy was achieved by Ludwig
Boltzmann, and you may wish to learn more about Boltzmann’s
ideas from my book Simple Nature, which you can download for
free. Briefly, Boltzmann realized that entropy was a measure of ran-
domness at the atomic level, and randomness doesn’t spontaneously
change into organization.

To emphasize the fundamental and universal nature of the sec-
ond law, here are a few examples.

Entropy and evolution example 19
A favorite argument of many creationists who don’t believe in evo-
lution is that evolution would violate the second law of thermody-
namics: the death and decay of a living thing releases heat (as
when a compost heap gets hot) and lessens the amount of en-
ergy available for doing useful work, while the reverse process,
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the emergence of life from nonliving matter, would require a de-
crease in entropy. Their argument is faulty, since the second law
only applies to closed systems, and the earth is not a closed sys-
tem. The earth is continuously receiving energy from the sun.

The heat death of the universe example 20
Victorian philosophers realized that living things had low entropy,
as discussed in example 19, and spent a lot of time worrying
about the heat death of the universe: eventually the universe
would have to become a high-entropy, lukewarm soup, with no
life or organized motion of any kind. Fortunately (?), we now
know a great many other things that will make the universe in-
hospitable to life long before its entropy is maximized. Life on
earth, for instance, will end when the sun evolves into a giant star
and vaporizes our planet.

Hawking radiation example 21
Any process that could destroy heat (or convert it into noth-

ing but mechanical work) would lead to a reduction in entropy.
Black holes are supermassive stars whose gravity is so strong
that nothing, not even light, can escape from them once it gets
within a boundary known as the event horizon. Black holes are
commonly observed to suck hot gas into them. Does this lead to
a reduction in the entropy of the universe? Of course one could
argue that the entropy is still there inside the black hole, but being
able to “hide” entropy there amounts to the same thing as being
able to destroy entropy.

The physicist Steven Hawking was bothered by this question, and
finally realized that although the actual stuff that enters a black
hole is lost forever, the black hole will gradually lose energy in the
form of light emitted from just outside the event horizon. This light
ends up reintroducing the original entropy back into the universe
at large.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) Show that under conditions of standard pressure and tem-
perature, the volume of a sample of an ideal gas depends only on
the number of molecules in it.
(b) One mole is defined as 6.0×1023 atoms. Find the volume of one
mole of an ideal gas, in units of liters, at standard temperature and
pressure (0 ◦C and 101 kPa).

√

2 A gas in a cylinder expands its volume by an amount ∆V ,
pushing out a piston. Show that the work done by the gas on the
piston is given by ∆W = P∆V .

3 (a) A helium atom contains 2 protons, 2 electrons, and 2
neutrons. Find the mass of a helium atom.

√

(b) Find the number of atoms in 1 kg of helium.
√

(c) Helium gas is monoatomic. Find the amount of heat needed
to raise the temperature of 1 kg of helium by 1 degree C. (This is
known as helium’s heat capacity at constant volume.)

√

4 Refrigerators, air conditioners, and heat pumps are heat
engines that work in reverse. You put in mechanical work, and
it the effect is to take heat out of a cooler reservoir and deposit
heat in a warmer one: QL + W = QH . As with the heat engines
discussed previously, the efficiency is defined as the energy transfer
you want (QL for a refrigerator or air conditioner, QH for a heat
pump) divided by the energy transfer you pay for (W ).

Efficiencies are supposed to be unitless, but the efficiency of an air
conditioner is normally given in terms of an EER rating (or a more
complex version called an SEER). The EER is defined as QL/W , but
expressed in the barbaric units of of Btu/watt-hour. A typical EER
rating for a residential air conditioner is about 10 Btu/watt-hour,
corresponding to an efficiency of about 3. The standard tempera-
tures used for testing an air conditioner’s efficiency are 80 ◦F (27 ◦C)
inside and 95 ◦F (35 ◦C) outside.

(a) What would be the EER rating of a reversed Carnot engine used
as an air conditioner?

√

(b) If you ran a 3-kW residential air conditioner, with an efficiency
of 3, for one hour, what would be the effect on the total entropy
of the universe? Is your answer consistent with the second law of
thermodynamics?

√

5 (a) Estimate the pressure at the center of the Earth, assuming
it is of constant density throughout. Use the technique of example
5 on page 148. Note that g is not constant with respect to depth
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— it equals Gmr/b3 for r, the distance from the center, less than b,
the earth’s radius.1 State your result in terms of G, m, and b.
(b) Show that your answer from part a has the right units for pres-
sure.
(c) Evaluate the result numerically.

√

(d) Given that the earth’s atmosphere is on the order of one thou-
sandth the thickness of the earth’s radius, and that the density of
the earth is several thousand times greater than the density of the
lower atmosphere, check that your result is of a reasonable order of
magnitude.

∫
6 (a) Determine the ratio between the escape velocities from the
surfaces of the earth and the moon.

√

(b) The temperature during the lunar daytime gets up to about
130 ◦C. In the extremely thin (almost nonexistent) lunar atmosphere,
estimate how the typical velocity of a molecule would compare with
that of the same type of molecule in the earth’s atmosphere. As-
sume that the earth’s atmosphere has a temperature of 0 ◦C.

√

(c) Suppose you were to go to the moon and release some fluo-
rocarbon gas, with molecular formula CnF2n+2. Estimate what is
the smallest fluorocarbon molecule (lowest n) whose typical velocity
would be lower than that of an N2 molecule on earth in proportion
to the moon’s lower escape velocity. The moon would be able to
retain an atmosphere made of these molecules.

√

7 Most of the atoms in the universe are in the form of gas that
is not part of any star or galaxy: the intergalactic medium (IGM).
The IGM consists of about 10−5 atoms per cubic centimeter, with
a typical temperature of about 103 K. These are, in some sense, the
density and temperature of the universe (not counting light, or the
exotic particles known as “dark matter”). Calculate the pressure of
the universe (or, speaking more carefully, the typical pressure due
to the IGM).

√

8 A sample of gas is enclosed in a sealed chamber. The gas
consists of molecules, which are then split in half through some
process such as exposure to ultraviolet light, or passing an electric
spark through the gas. The gas returns to thermal equilibrium with
the surrounding room. How does its pressure now compare with its
pressure before the molecules were split?

9 The figure shows a demonstration performed by Otto von
Guericke for Emperor Ferdinand III, in which two teams of horses
failed to pull apart a pair of hemispheres from which the air had
been evacuated. (a) What object makes the force that holds the

1Derivation: The shell theorem tells us that the gravitational field at r is the
same as if all the mass existing at greater depths was concentrated at the earth’s
center. Since volume scales like the third power of distance, this constitutes a
fraction (r/b)3 of the earth’s mass, so the field is (Gm/r2)(r/b)3 = Gmr/b3.
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Problem 9.

hemispheres together? (b) The hemispheres are in a museum in
Berlin, and have a diameter of 65 cm. What is the amount of force
holding them together? (Hint: The answer would be the same if
they were cylinders or pie plates rather then hemispheres.)

10 Even when resting, the human body needs to do a certain
amount of mechanical work to keep the heart beating. This quantity
is difficult to define and measure with high precision, and also de-
pends on the individual and her level of activity, but it’s estimated
to be about 1 to 5 watts. Suppose we consider the human body
as nothing more than a pump. A person who is just lying in bed
all day needs about 1000 kcal/day worth of food to stay alive. (a)
Estimate the person’s thermodynamic efficiency as a pump, and (b)
compare with the maximum possible efficiency imposed by the laws
of thermodynamics for a heat engine operating across the difference
between a body temperature of 37 ◦C and an ambient temperature
of 22 ◦C. (c) Interpret your answer. . Answer, p. 167
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Appendix 1: Exercises

Exercise 5A: Torque

Equipment:

• rulers with holes in them

• spring scales (two per group)

While one person holds the pencil which forms the axle for the ruler, the other members of the
group pull on the scale and take readings. In each case, calculate the total torque on the ruler,
and find out whether it equals zero to roughly within the accuracy of the experiment.
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Appendix 3: Hints and Solutions

Answers to Self-Checks

Answers to Self-Checks for Chapter 1
Page 22, self-check A: (1) A spring-loaded toy gun can cause a bullet to move, so the spring
is capable of storing energy and then converting it into kinetic energy. (2) The amount of energy
stored in the spring relates to the amount of compression, which can be measured with a ruler.

Answers to Self-Checks for Chapter 2
Page 42, self-check A: Both balls start from the same height and end at the same height, so
they have the same ∆y. This implies that their losses in potential energy are the same, so they
must both have gained the same amount of kinetic energy.

Answers to Self-Checks for Chapter 3
Page 50, self-check A: Work is defined as the transfer of energy, so like energy it is a scalar
with units of joules.

Page 53, self-check B: Whenever energy is transferred out of the spring, the same amount
has to be transferred into the ball, and vice versa. As the spring compresses, the ball is doing
positive work on the spring (giving up its KE and transferring energy into the spring as PE),
and as it decompresses the ball is doing negative work (extracting energy).

Page 56, self-check C: (a) No. The pack is moving at constant velocity, so its kinetic energy
is staying the same. It is only moving horizontally, so its gravitational potential energy is also
staying the same. No energy transfer is occurring. (b) No. The horse’s upward force on the
pack forms a 90-degree angle with the direction of motion, so cos θ = 0, and no work is done.

Page 58, self-check D: Only in (a) can we use Fd to calculate work. In (b) and (c), the force
is changing as the distance changes.

Answers to Self-Checks for Chapter 5
Page 122, self-check A: 1, 2, and 4 all have the same sigm, because they are trying to twist
the wrench clockwise. The sign of torque 3 is opposite to the signs of the others. The magnitude
of torque 3 is the greatest, since it has a large r, and the force is nearly all perpendicular to the
wrench. Torques 1 and 2 are the same because they have the same values of r and F⊥. Torque
4 is the smallest, due to its small r.

Answers to Self-Checks for Chapter 5
Page 147, self-check A: Solids can exert shear forces. A solid could be in an equilibrium in
which the shear forces were canceling the forces due to unequal pressures on the sides of the
cube.



Answers to Selected Homework Problems
Solutions for Chapter A

Page 163, problem 10: (a) ∼ 2 − 10% (b) 5% (c) The high end for the body’s actual
efficiency is higher than the limit imposed by the laws of thermodynamics. However, the high
end of the 1-5 watt range quoted in the problem probably includes large people who aren’t just
lying around. Still, it’s impressive that the human body comes so close to the thermodynamic
limit.

Solutions to Selected Homework Problems

Solutions for Chapter 1
Page 30, problem 7: A force is an interaction between two objects, so while the bullet is in
the air, there is no force. There is only a force while the bullet is in contact with the book.
There is energy the whole time, and the total amount doesn’t change. The bullet has some
kinetic energy, and transfers some of it to the book as heat, sound, and the energy required to
tear a hole through the book.

Page 31, problem 8: (a) The energy stored in the gasoline is being changed into heat via
frictional heating, and also probably into sound and into energy of water waves. Note that the
kinetic energy of the propeller and the boat are not changing, so they are not involved in the
energy transformation. (b) The crusing speed would be greater by a factor of the cube root of
2, or about a 26% increase.

Page 31, problem 9: We don’t have actual masses and velocities to plug in to the equation,
but that’s OK. We just have to reason in terms of ratios and proportionalities. Kinetic energy
is proportional to mass and to the square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)/(2.34)2 = 9.23 J

Page 31, problem 11: Room temperature is about 20 ◦C. The fraction of the energy that
actually goes into heating the water is

(250 g)/(0.24 g· ◦C/J)× (100 ◦C− 20 ◦C)
(1.25× 103 J/s) (126 s)

= 0.53

So roughly half of the energy is wasted. The wasted energy might be in several forms: heating
of the cup, heating of the oven itself, or leakage of microwaves from the oven.

Solutions for Chapter 2
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Page 45, problem 5:

Etotal,i = Etotal,f

PEi + heati = PEf +KEf + heatf

1
2
mv2 = PEi − PEf + heati − heatf

= −∆PE −∆heat

v =

√
2
(
−∆PE −∆heat

m

)
= 6.4 m/s

Page 46, problem 7: Let θ be the angle by which he has progressed around the pipe. Con-
servation of energy gives

Etotal,i = Etotal,f

PEi = PEf +KEf

Let’s make PE = 0 at the top, so

0 = mgr(cos θ − 1) +
1
2
mv2 .

While he is still in contact with the pipe, the radial component of his acceleration is

ar =
v2

r
,

and making use of the previous equation we find

ar = 2g(1− cos θ) .

There are two forces on him, a normal force from the pipe and a downward gravitation force
from the earth. At the moment when he loses contact with the pipe, the normal force is zero,
so the radial component, mg cos θ, of the gravitational force must equal mar,

mg cos θ = 2mg(1− cos θ) ,

which gives

cos θ =
2
3

.

The amount by which he has dropped is r(1− cos θ), which equals r/3 at this moment.

Page 46, problem 9: (a) Example: As one child goes up on one side of a see-saw, another child
on the other side comes down. (b) Example: A pool ball hits another pool ball, and transfers
some KE.

Page 46, problem 11: Suppose the river is 1 m deep, 100 m wide, and flows at a speed
of 10 m/s, and that the falls are 100 m tall. In 1 second, the volume of water flowing over
the falls is 103 m3, with a mass of 106 kg. The potential energy released in one second is
(106 kg)(g)(100 m) = 109 J, so the power is 109 W. A typical household might have 10 hundred-
watt applicances turned on at any given time, so it consumes about 103 watts on the average.
The plant could supply a about million households with electricity.
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Solutions for Chapter 3
Page 73, problem 18: No. Work describes how energy was transferred by some process. It
isn’t a measurable property of a system.

Solutions for Chapter 4
Page 103, problem 8: Let m be the mass of the little puck and M = 2.3m be the mass of
the big one. All we need to do is find the direction of the total momentum vector before the
collision, because the total momentum vector is the same after the collision. Given the two
components of the momentum vector px = mv and py = Mv, the direction of the vector is
tan−1(py/px) = 23 ◦ counterclockwise from the big puck’s original direction of motion.

Page 104, problem 11: Momentum is a vector. The total momentum of the molecules is
always zero, since the momenta in different directions cancal out on the average. Cooling
changes individual molecular momenta, but not the total.

Page 104, problem 14: By conservation of momentum, the total momenta of the pieces after
the explosion is the same as the momentum of the firework before the explosion. However, there
is no law of conservation of kinetic energy, only a law of conservation of energy. The chemical
energy in the gunpowder is converted into heat and kinetic energy when it explodes. All we can
say about the kinetic energy of the pieces is that their total is greater than the kinetic energy
before the explosion.

Page 104, problem 15: (a) Particle i had velocity vi in the center-of-mass frame, and has
velocity vi + u in the new frame. The total kinetic energy is

1
2
m1 (v1 + u)2 + . . . ,

where “. . . ” indicates that the sum continues for all the particles. Rewriting this in terms of
the vector dot product, we have

1
2
m1 (v1 + u) · (v1 + u) + . . . =

1
2
m1 (v1 · v1 + 2u · v1 + u · u) + . . . .

When we add up all the terms like the first one, we get Kcm. Adding up all the terms like the
third one, we get M |u|2/2. The terms like the second term cancel out:

m1u · v1 + . . . = u · (m1v1 + . . .) ,

where the sum in brackets equals the total momentum in the center-of-mass frame, which is
zero by definition.
(b) Changing frames of reference doesn’t change the distances between the particles, so the
potential energies are all unaffected by the change of frames of reference. Suppose that in a
given frame of reference, frame 1, energy is conserved in some process: the initial and final
energies add up to be the same. First let’s transform to the center-of-mass frame. The potential
energies are unaffected by the transformation, and the total kinetic energy is simply reduced
by the quantity M |u1|2/2, where u1 is the velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and final energies still leaves them equal. Now
we transform to frame 2. Again, the effect is simply to change the initial and final energies by
adding the same constant.

Page 105, problem 16: A conservation law is about addition: it says that when you add up
a certain thing, the total always stays the same. Funkosity would violate the additive nature of
conservation laws, because a two-kilogram mass would have twice as much funkosity as a pair
of one-kilogram masses moving at the same speed.
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Solutions for Chapter 5
Page 140, problem 20: The pliers are not moving, so their angular momentum remains
constant at zero, and the total torque on them must be zero. Not only that, but each half of the
pliers must have zero total torque on it. This tells us that the magnitude of the torque at one
end must be the same as that at the other end. The distance from the axis to the nut is about 2.5
cm, and the distance from the axis to the centers of the palm and fingers are about 8 cm. The
angles are close enough to 90 ◦ that we can pretend they’re 90 degrees, considering the rough
nature of the other assumptions and measurements. The result is (300 N)(2.5 cm) = (F )(8 cm),
or F = 90 N.

Page 141, problem 28: The foot of the rod is moving in a circle relative to the center of the
rod, with speed v = πb/T , and acceleration v2/(b/2) = (π2/8)g. This acceleration is initially
upward, and is greater in magnitude than g, so the foot of the rod will lift off without dragging.
We could also worry about whether the foot of the rod would make contact with the floor again
before the rod finishes up flat on its back. This is a question that can be settled by graphing,
or simply by inspection of figure m on page 119. The key here is that the two parts of the
acceleration are both independent of m and b, so the result is univeral, and it does suffice to
check a graph in a single example. In practical terms, this tells us something about how difficult
the trick is to do. Because π2/8 = 1.23 isn’t much greater than unity, a hit that is just a little
too weak (by a factor of 1.231/2 = 1.11) will cause a fairly obvious qualitative change in the
results. This is easily observed if you try it a few times with a pencil.
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rate of change of, 91
related to center of mass, 88
transfer of, 91
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discovery of, 85
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unit, 145
perpetual motion machine, 14
potential energy

electrical, 42
gravitational, 40, 63
nuclear, 43
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power, 25
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quarks, 36

rigid rotation
defined, 109

scalar (dot) product, 66
slingshot effect, 90
spin theorem, 116
spring

potential energy of, 62
work done by, 62

statics, 127
Stevin, Simon, 17

temperature
absolute zero, 150
as a measure of energy per atom, 37
Celsius, 150
Kelvin, 150
macroscopic definition, 150

thermodynamics, 37, 144
first law of, 144
second law of, 159
zeroth law of, 149

thermometer, 150
torque

defined, 120
due to gravity, 123
relationship to force, 121

watt (unit), 26
work

calculated with calculus, 60
defined, 50
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done by a spring, 62
done by a varying force, 57
in three dimensions, 55
positive and negative, 53
related to potential energy, 62

work-kinetic energy theorem, 65
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Useful Data

Metric Prefixes

M- mega- 106

k- kilo- 103

m- milli- 10−3

µ- (Greek mu) micro- 10−6

n- nano- 10−9

p- pico- 10−12

f- femto- 10−15

(Centi-, 10−2, is used only in the centimeter.)

The Greek Alphabet

α A alpha ν N nu
β B beta ξ Ξ xi
γ Γ gamma o O omicron
δ ∆ delta π Π pi
ε E epsilon ρ P rho
ζ Z zeta σ Σ sigma
η H eta τ T tau
θ Θ theta υ Y upsilon
ι I iota φ Φ phi
κ K kappa χ X chi
λ Λ lambda ψ Ψ psi
µ M mu ω Ω omega

Fundamental Constants

gravitational constant G = 6.67× 10−11 N·m2/kg2

speed of light c = 3.00× 108 m/s

Subatomic Particles

particle mass (kg) radius (fm)
electron 9.109× 10−31 . 0.01
proton 1.673× 10−27 ∼ 1.1
neutron 1.675× 10−27 ∼ 1.1

The radii of protons and neutrons can only be given approx-

imately, since they have fuzzy surfaces. For comparison, a

typical atom is about a million fm in radius.

Notation and Units

quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
area m2 (square meters) A
volume m3 (cubic meters) V
velocity m/s v
acceleration m/s2 a
gravitational field J/kg·m or m/s2 g
force newton, 1 N=1 kg·m/s2 F
pressure 1 Pa=1 N/m2 P
energy joule, J E
power watt, 1 W = 1 J/s P
momentum kg·m/s p
angular momentum kg·m2/s or J·s L
torque N·m τ
period s T

Conversions

Nonmetric units in terms of metric ones:

1 inch = 25.4 mm (by definition)
1 pound-force = 4.5 newtons of force
(1 kg) · g = 2.2 pounds-force
1 scientific calorie = 4.18 J
1 kcal = 4.18× 103 J
1 gallon = 3.78× 103 cm3

1 horsepower = 746 W

When speaking of food energy, the word “Calorie” is used

to mean 1 kcal, i.e., 1000 calories. In writing, the capital C

may be used to indicate 1 Calorie=1000 calories.

Relationships among U.S. units:
1 foot (ft) = 12 inches
1 yard (yd) = 3 feet
1 mile (mi) = 5280 feet

Earth, Moon, and Sun

body mass (kg) radius (km) radius of orbit (km)
earth 5.97× 1024 6.4× 103 1.49× 108

moon 7.35× 1022 1.7× 103 3.84× 105

sun 1.99× 1030 7.0× 105 —
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